题面

很有趣的一道题,看起来是个神奇网络流,其实我们只要知道网络的一些性质就可以做这道题了

因为题目要求流量守恒,所以我们其实是在网络中搬运流量,最终使得总费用减小,具体来说我们可以直接把这种“搬运”的关系建出来:

对于一条从$u$到$v$的边,从$u$向$v$连一条$b+d$的边,如果其上限不为零,再从$v$向$u$连一条$a-d$的边

那么得到的这张新图其实是描述了图中的费用流,一个合法的搬运方案就是一个环(转了一圈保证流量还是守恒的),然后有一个叫做消圈定理的东西:

消圈定理:残量网络里如果存在负费用环,那么当前流不是最小费用流。因为通过增加残量网络负权边的流量,减少正权边的流量,一定能得到另一个更优的可行流。

于是就判负环吧=。=

 #include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
const double eps=1e-,inf=1e12;
int n,m,t1,t2,t3,cnt,last,from;
double val[*M+N],dis[N],d1,d2,d3,l,r;
int p[N],noww[*M+N],goal[*M+N],inq[N],vis[N];
queue<int> qs;
void link(int f,int t,double v)
{
noww[++cnt]=p[f],p[f]=cnt;
goal[cnt]=t,val[cnt]=v;
}
bool check(double x)
{
memset(vis,,sizeof vis);
for(int i=;i<=n;i++) dis[i]=inf;
dis[from]=,inq[from]=true,qs.push(from);
while(!qs.empty())
{
int tn=qs.front();
inq[tn]=false,qs.pop();
for(int i=p[tn];i;i=noww[i])
if(dis[goal[i]]>dis[tn]+val[i]+x)
{
dis[goal[i]]=dis[tn]+val[i]+x;
if(!inq[goal[i]])
{
inq[goal[i]]=true,qs.push(goal[i]);
if(++vis[goal[i]]>n) return false;
}
}
}
return true;
}
int main()
{
scanf("%d%d",&n,&m),n+=,r=;
for(int i=;i<=m;i++)
{
scanf("%d%d%lf%lf%d%lf",&t1,&t2,&d1,&d2,&t3,&d3);
if(t1==n-) {from=t2; continue;}
if(t2==n-) {from=t1; continue;}
link(t1,t2,d2+d3); if(t3) link(t2,t1,d1-d3);
}
while(r-l>eps)
{
double mid=(l+r)/;
if(check(mid)) r=mid;
else l=mid;
}
printf("%.2lf",r);
return ;
}

解题:SCOI 2014 方伯伯运椰子的更多相关文章

  1. 「SCOI2014」方伯伯运椰子 解题报告

    「SCOI2014」方伯伯运椰子 可以看出是分数规划 然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的. 然后按照套路 ...

  2. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  3. bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]

    3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...

  4. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  5. 【BZOJ3597】方伯伯运椰子(分数规划,网络流)

    [BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...

  6. 3597: [Scoi2014]方伯伯运椰子[分数规划]

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Sta ...

  7. P3288-[SCOI2014]方伯伯运椰子【0/1分数规划,负环】

    正题 题目链接:https://www.luogu.com.cn/problem/P3288 题目大意 给出\(n\)个点\(m\)条边的一张图,没条边\(i\)流量为\(c_i\),费用是\(d_i ...

  8. bzoj 3597: [Scoi2014]方伯伯运椰子

    Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Ou ...

  9. bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案

    题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价 ...

随机推荐

  1. POJ-3273(二分)

    //题意:给出农夫在n天中每天的花费,要求把这n天分作m组, //每组的天数必然是连续的,要求分得各组的花费之和应该尽可能地小,最后输出各组花费之和中的最大值. //思路:看到各组最小和最大的,果断上 ...

  2. CSP201612-2:工资计算

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  3. 基于C#的机器学习--模糊逻辑-穿越障碍

    模糊逻辑-穿越障碍 模糊逻辑.另一个我们经常听到的术语.但它的真正含义是什么?它是否意味着不止一件事?我们马上就会知道答案. 我们将使用模糊逻辑来帮助引导一辆自动驾驶汽车绕过障碍,如果我们做得正确,我 ...

  4. Kickstart 安装centos7

    以前是怎么安装系统的 光盘(ISO文件,光盘的镜像文件)===>每一台物理机都得给一个光驱,如果用外置光驱的话,是不是每台机器都需要插一下 U盘:ISO镜像刻录到U盘==>需要每台机器都需 ...

  5. Python20-Day02

    1.数据 数据为什么要分不同的类型 数据是用来表示状态的,不同的状态就应该用不同类型的数据表示: 数据类型 数字(整形,长整形,浮点型,复数),字符串,列表,元组,字典,集合 2.字符串 1.按索引取 ...

  6. Fluent Python: Slice

    Pyhton中序列类型支持切片功能,比如list: >>> numbers = [1, 2, 3, 4, 5] >>> numbers[1:3] [2, 3] tu ...

  7. centos上搭建git服务--4

    Git是目前世界上最先进的分布式版本控制系统(没有之一).使用Svn的请参考<版本控制-svn服务器搭建和常用命令(centos 6.3)>,下面介绍Git的常用命令 常用命令 简单版 升 ...

  8. 今目标登录时报网络错误E110

    今目标登录的时候报错了,错误代码:E110不论怎么修改都修复不了,百度相关资料也没有,只能联系客服. 经过好久终于联系上了客服,客服给出的解决方案是修改:Enternet选项: 第一步:打开,控制面板 ...

  9. Jquery mobile div常用属性

    组件 页面 jQuery Mobile 应用了 HTML5 标准的特性,在结构化的页面中完整的页面结构分为 header. content.footer 这三个主要区域. 在 body 中插入内容块: ...

  10. 阿里云服务器内部dns可能出错

    今天部署一个阿里云服务器,所有配置项都改好了,就是连接不上本机. 反复查找,防火墙端口和网卡接口都配置对了,selinux也关闭了,但就是连接不上阿里云内网的ip. 由于连接是本机,把ip填写为127 ...