如果未做特别说明,文中的程序都是 Python3 代码。

QuantLib 金融计算——随机过程之一般 Black Scholes 过程

载入模块

import QuantLib as ql
import pandas as pd
import numpy as np
import seaborn as sn print(ql.__version__)
1.12

一般 Black Scholes 过程

quantlib-python 中 Black Scholes 框架下常见的几种随机过程均派生自基类 GeneralizedBlackScholesProcess,而 GeneralizedBlackScholesProcess 模拟下列 SDE 描述的一维随机过程:

\[d \ln S_t = \left( r ( t ) - q ( t ) - \frac { \sigma \left( t , S_t \right)^2 } 2 \right) d t + \sigma d W_t
\]

等式使用风险中性漂移而不是一般漂移 \(\mu\)。风险中性利率由股息率 \(q(t)\) 调整,并且相应的扩散项是 \(\sigma\)。

作为基类,GeneralizedBlackScholesProcess 的构造函数为

GeneralizedBlackScholesProcess(x0,
dividendTS,
riskFreeTS,
blackVolTS)

其中:

  • x0QuoteHandle 对象,表示 SDE 的起始值;
  • dividendTSYieldTermStructureHandle 对象,表示股息率的期限结构
  • riskFreeTSYieldTermStructureHandle 对象,表示无风险利率的期限结构
  • blackVolTSBlackVolTermStructureHandle 对象,表示波动率的期限结构

GeneralizedBlackScholesProcess 提供了相应的检查器,返回构造函数接受的关键参数:

  • stateVariable
  • dividendYield
  • riskFreeRate
  • blackVolatility

StochasticProcess1D 继承来的离散化函数 evolve,描述 SDE 从 \(t\) 到 \(t + \Delta t\) 的变化。

QuantLib 提供了一些具体的派生类,这些类代表众所周知的具体过程,如

  • BlackScholesProcess:没有股息率的一般 BS 过程;
  • BlackScholesMertonProcess:一般 BS 过程;
  • BlackProcess:一般 Black 过程;
  • GarmanKohlagenProcess:包含外汇利率的一般 BS 过程

这些派生类在构造和调用方式上大同小异,在下面的例子中,我们将建立一个具有平坦无风险利率、股息率和波动率期限结构的 Black-Scholes-Merton 过程,并画出模拟结果。

def testingStochasticProcesses1():
refDate = ql.Date(27, ql.January, 2019)
riskFreeRate = 0.0321
dividendRate = 0.0128
spot = 52.0
vol = 0.2144
cal = ql.China()
dc = ql.ActualActual() rdHandle = ql.YieldTermStructureHandle(
ql.FlatForward(refDate, riskFreeRate, dc))
rqHandle = ql.YieldTermStructureHandle(
ql.FlatForward(refDate, dividendRate, dc)) spotQuote = ql.SimpleQuote(spot)
spotHandle = ql.QuoteHandle(
ql.SimpleQuote(spot)) volHandle = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(refDate, cal, vol, dc)) bsmProcess = ql.BlackScholesMertonProcess(
spotHandle, rqHandle, rdHandle, volHandle) seed = 1234
unifMt = ql.MersenneTwisterUniformRng(seed)
bmGauss = ql.BoxMullerMersenneTwisterGaussianRng(unifMt) dt = 0.004
numVals = 250 bsm = pd.DataFrame() for i in range(10):
bsmt = pd.DataFrame(
dict(
t=np.linspace(0, dt * numVals, numVals + 1),
path=np.nan,
n='p' + str(i))) bsmt.loc[0, 'path'] = spotQuote.value() x = spotQuote.value() for j in range(1, numVals + 1):
dw = bmGauss.next().value()
x = bsmProcess.evolve(bsmt.loc[j, 't'], x, dt, dw)
bsmt.loc[j, 'path'] = x bsm = pd.concat([bsm, bsmt]) sn.lineplot(
x='t', y='path',
data=bsm,
hue='n', legend=None) testingStochasticProcesses1()

QuantLib 金融计算——随机过程之一般 Black Scholes 过程的更多相关文章

  1. QuantLib 金融计算——随机过程之 Heston 过程

    目录 QuantLib 金融计算--随机过程之 Heston 过程 Heston 过程 参考文献 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之 H ...

  2. QuantLib 金融计算——随机过程之概述

    目录 QuantLib 金融计算--随机过程之概述 框架 用法与接口 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之概述 载入模块 import Q ...

  3. QuantLib 金融计算

    我的微信:xuruilong100 <Implementing QuantLib>译后记 QuantLib 金融计算 QuantLib 入门 基本组件之 Date 类 基本组件之 Cale ...

  4. QuantLib 金融计算——高级话题之模拟跳扩散过程

    目录 QuantLib 金融计算--高级话题之模拟跳扩散过程 跳扩散过程 模拟算法 面临的问题 "脏"的方法 "干净"的方法 实现 示例 参考文献 如果未做特别 ...

  5. QuantLib 金融计算——数学工具之求解器

    目录 QuantLib 金融计算--数学工具之求解器 概述 调用方式 非 Newton 算法(不需要导数) Newton 算法(需要导数) 如果未做特别说明,文中的程序都是 Python3 代码. Q ...

  6. QuantLib 金融计算——基本组件之 Currency 类

    目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...

  7. QuantLib 金融计算——修复 BatesProcess 中的两个 Bug

    QuantLib 金融计算--修复 BatesProcess 中的两个 Bug 我发现了 BatesProcess 中的两个 Bug: 基类 HestonProcess::factors 的返回值取决 ...

  8. QuantLib 金融计算——QuantLib 入门

    目录 QuantLib 金融计算--QuantLib 入门 简介 主要功能 安装与使用 学习指南 The HARD Way The EASY Way QuantLib 金融计算--QuantLib 入 ...

  9. QuantLib 金融计算——基本组件之 Date 类

    目录 QuantLib 金融计算--基本组件之 Date 类 Date 对象的构造 一些常用的成员函数 一些常用的静态函数 为估值计算配置日期 如果未做特别说明,文中的程序都是 Python3 代码. ...

随机推荐

  1. [Jenkins]怎样自定义发出邮件的 From Email Address 和 From Name

    在Jenkins上建了一个执行SoapUI的task,想要自定义发送邮件的地址和姓名,怎么办呢? 在Editable Email Notification里面添加Pre-send Script 脚本如 ...

  2. 模拟在table中移动鼠标,高亮显示鼠标所在行,固定表头

    <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="Conten ...

  3. UVa 10603 Fill (暴力BFS+优先队列)

    题意:给定4个数,a,b,c,d,分别代表空杯子容积为a,b,一个盛满水的杯子容积为c,让你不断倒水,找一个dd,是不是存在某个时刻, 某个杯子里的水dd,和d相同,或者无限接近.让求最少的倒水量和d ...

  4. vue 使用axios 数据请求第三方插件的使用

    axios 基于http客户端的promise,面向浏览器和nodejs 特色 浏览器端发起XMLHttpRequests请求 node端发起http请求 支持Promise API 监听请求和返回 ...

  5. Linux 基础教程 43-su和sudo命令

        在使用Linux系统中,有时候还需要做身份切换,这是为什么? 使用普通账号:系统日常操作的好习惯   虽然使用root对系统进行各种操作不受权限等方面的限制,但却存在重大的安全隐患,假如有人不 ...

  6. 23 DesignPatterns学习笔记:C++语言实现 --- 2.1 Bridge

    23 DesignPatterns学习笔记:C++语言实现 --- 2.1 Bridge 2016-07-22 (www.cnblogs.com/icmzn) 模式理解  

  7. 使用Intel的FPGA电源设计FPGA 供电的常用反馈电阻阻值

    使用Intel的FPGA电源设计FPGA 供电的常用反馈电阻阻值. 当前仅总结使用EN5339芯片的方案 Vout = Ra*0.6/Rb + 0.6 芯片手册推荐Ra取348K,则 3.3V时,取R ...

  8. SpringBoot学习:整合shiro自动登录功能(rememberMe记住我功能)

    首先在shiro配置类中注入rememberMe管理器 /** * cookie对象; * rememberMeCookie()方法是设置Cookie的生成模版,比如cookie的name,cooki ...

  9. Cacti部署

    1>监控概述   通常运维人员在一个企业当中所需要管理一台或者多台服务器,或者甚至更多,特别是BAT公司或者门户级别的公司,一个人管理的服务器可能上百甚至上千台                  ...

  10. Oracle FND API–Create User

    --API - fnd_user_pkg.createuser----Example -- -- ---------------------------------------- API to CRE ...