1 向量化( Vectorization )

在逻辑回归中,以计算z为例,$ z =  w^{T}+b $,你可以用for循环来实现。

但是在python中z可以调用numpy的方法,直接一句$z = np.dot(w,x) + b$用向量化完成,而且你会发现这个非常快。

ng做了个实验,求两个100万长的一维向量的內积,用向量化花了1.5毫秒,而用for循环计算花了400多毫秒。

所以平常记得用向量化,一定要避免使用for循环,你的代码会快很多。

CPU和GPU都有并行化的指令,有时候叫SIMD( single instruction multiple data )。

如果你使用了这样的内置函数,比如np.function,python的numpy能充分利用并行化去更快的计算。

2 更多向量化的例子( More Vectorization Examples )

平时要避免使用for循环,善用python的numpy库中的内置函数。

比如矩阵A和向量v的內积,可以用np.dot。对一列向量v实施指数运算,可以用np.exp,还有各种np.log,np.abs,np.maxmum( v, 0)等等。

对于 v**2, 1/v这样的操作也要考虑用np里的函数。

3 向量化逻辑回归( Vectorizing Logistic Regression )

对于逻辑回归的导数计算也应该使用向量化,完全不用for循环。图中给出了向量化的过程。

Z的计算的向量化形式是$z = np.dot(w.T,x) + b$,其中b在这里是一个实数,python在向量和实数相加时,会自动把实数变成一个相同维度的向量再相加。

其中w是n * 1的列向量,w.T是1 * n的列向量,X是n * m的矩阵,结果就是1 * m的向量,最后加上1 * m的b向量,得到1 * m的Z。最后通过sigmoid得到预测值A。

同时还可以利用向量化计算m个数据的梯度,注意是同时计算。下图左边是for循环的实现,右边是向量化的实现。

这里dz是代价函数对z变量的导数,之前推导过等于预测值减去实际值a - y。

dw是代价函数对w的导数,db是代价函数对b的导数,如果不记得了可以翻看上一节课,逻辑回归的内容。

虽然要尽量使用向量化,但是在进行多次梯度下降的迭代还是要用到for循环,这个不可避免。

4 python中的广播( python broadcasting)

当你用一个向量加上一个数的时候,python会自动把这个数变成向量再一一相加。

当你用一个m*n的矩阵加(减乘除)上1*n的向量时,python会自动把1*n的向量竖直复制变成m*n再相加。

当你用一个m*n的矩阵加上m*1的向量时,python会自动把m*1的向量水平复制变成m*n再相加。

这是实现神经网络时主要用到的广播,更详细的可以查看numpy文档搜索broadcasting。

对于numpy中的一些用法需要了解,可以帮助你更高效地用矩阵运算来提升程序效率,ng在本节还举了求百分比的例子。

$A.sum(axis=0)$代表竖直求和,如果axis = 1就是水平求和。

5 python / numpy中的向量说明( A note on python/numpy vectors )

numpy和广播使我们可以用一行代码完成很多运算。

但有时可能会引入非常细微的错误,非常奇怪的bug,如果你不熟悉所有的复杂的广播运作方式。

比如你觉得一个行向量和列向量相加应该会报错,但是并不会,而且也不是简单的一一相加。

python这些奇怪的效果有其内在逻辑,如果不熟悉python,你可能会写出奇怪的难以调试的bug。

ng的建议,在实现神经网络的时候不要使用shape为(n,)这样的变量,要用(n,1)。

比如a 的 shape是(5, ) ,当你计算$np.dot(a, a.T)$的时候得到的是一个实数,a和a的转置,它们的shape都是(5, )。

如果a 的 shape是(5, 1),你计算$np.dot(a, a.T)$的时候得到的就是一个5*5的矩阵。a的shape是( 5, 1),而a.T的shape是( 1, 5 )。

a.shape = (5, )这是一个秩为1的数组,不是行向量也不是列向量。很多学生出现难以调试的bug都来自秩为1数组。

另外你在代码中做了很多事情后可能不记得或者不确定a是怎样的时候,用$assert( a.shape == (5,1) )$来检查你的矩阵的维度。

如果你得到了(5,) 你可以把它reshape成(5, 1)或(1, 5),reshape是很快的O(1)复杂度,所以放心大胆的用它,不用担心。

ng-深度学习-课程笔记-3: Python和向量化(Week2)的更多相关文章

  1. 深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE

    深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 201 ...

  2. 深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning)

    深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can ...

  3. 深度学习课程笔记(十六)Recursive Neural Network

    深度学习课程笔记(十六)Recursive Neural Network  2018-08-07 22:47:14 This video tutorial is adopted from: Youtu ...

  4. 深度学习课程笔记(十五)Recurrent Neural Network

    深度学习课程笔记(十五)Recurrent Neural Network 2018-08-07 18:55:12 This video tutorial can be found from: Yout ...

  5. 深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO)

    深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://b ...

  6. 深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods)

    深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods) 2018-07-17 16:50:12 Reference:https://www.you ...

  7. 深度学习课程笔记(十)Q-learning (Continuous Action)

    深度学习课程笔记(十)Q-learning (Continuous Action) 2018-07-10 22:40:28 reference:https://www.youtube.com/watc ...

  8. 深度学习课程笔记(九)VAE 相关推导和应用

    深度学习课程笔记(九)VAE 相关推导和应用 2018-07-10 22:18:03 Reference: 1. TensorFlow code: https://jmetzen.github.io/ ...

  9. 深度学习课程笔记(八)GAN 公式推导

    深度学习课程笔记(八)GAN 公式推导 2018-07-10  16:15:07

随机推荐

  1. 【RF库Collections测试】Get Dictionary Items

    Name:Get Dictionary ItemsSource:Collections <test library>Arguments:[ dictionary ]Returns item ...

  2. nano100B的看门狗讲解

    看门狗定时器的用途是在软件出问题时执行系统复位功能,这可以防止系统无限期地挂起.除此之外,看门狗定时器还支持将CPU 从掉电模式唤醒的功能.看门狗定时器包含一个18 位的自由运行计数器,定时溢出间隔可 ...

  3. jdbc批处理

    批量处理允许将相关的SQL语句分组到批处理中,并通过对数据库的一次调用来提交它们,一次执行完成与数据库之间的交互. 一次向数据库发送多个SQL语句时,可以减少通信开销,从而提高性能. 不需要JDBC驱 ...

  4. 【顽固BUG】Visual Studio 2015 + TestDriven.NET-3.8.2860_Personal_Beta 调用的目标发生了异常。

    前言 突然怎么弄也无法断点调试了 输出如下: ------ Test started: Assembly: Server5.V2.dll ------ 调用的目标发生了异常. 而且网站运行提示: -- ...

  5. LNMP redis 安装、PHPredis扩展配置、服务器自启动、redis认证密码

    背景: LNMP 环境(centos7) 一. 安装redis 1.下载,解压,编译 $ cd /usr/local$ wget http://download.redis.io/releases/r ...

  6. kerberos认证协议分析

    Kerberos认证协议分析 Kerberos认证协议流程 如上图: * 第一步:client和认证服务器(AS)通信完成认证过程,如果认证成功AS返回给client一个TGT(用来向TGS获取tic ...

  7. 【BZOJ1818】[Cqoi2010]内部白点 扫描线+树状数组

    [BZOJ1818][Cqoi2010]内部白点 Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟,所有内部白点同时变 ...

  8. ios 添加朦层

    @interface RootViewController : UIViewController { UIView *view; } -(void)createBackgroundView { vie ...

  9. Android - 获取SD卡的内存空间大小

    获取SD卡的内存空间大小 //获得SD卡空间的信息 File path=Environment.getExternalStorageDirectory(); StatFs statFs=new Sta ...

  10. 微信小程序 --- 文件的上传和下载

    文件上传 / 文件下载 : wx.uploadFile