题目描述

给出一个n*m的矩阵,某些格子不能通过,某些格子只能上下通过或左右通过。求经过所有非不能通过格子的哈密顿回路条数。

输入

第一行有两个数N, M表示地图被分割成N*M个块,接下来有N行,每行有M个字符。
 .  表示这个块可以通过
 - 表示这个块只可以左右通过
 | 表示这个块只可以上下通过
 # 表示这个块不能通过
(从每个块只能走到其上下左右相邻的四个块)

输出

一个数,表示小明把所以可以通过的块都经过且只经过一次并回到原地的方案数。

样例输入

4 4
....
..-.
....
....

样例输出

1


题解

插头dp

这道题 的唯一差别在于:部分格子只能上下通过或只能左右通过。

因此判断条件那里改一改就好了。

这里学了一下 CQzhangyu 的技♂巧:判断时只需要判断当前状态是否适用于当前格子,以及转移是否适用于当前格子即可。这样不合法的状态就会在下一步剪掉。这一步可以省很大的代码量。

注意开long long(题面的long指的就是int)

#include <cstdio>
#include <cstring>
typedef long long ll;
int m , a[13][13] , b[13] , w[1600000] , v[42000] , tot;
ll f[13][13][42000];
char str[14];
void dfs(int p , int c , int now)
{
if(c < 0 || c > m - p + 1) return;
if(p > m)
{
w[now] = ++tot , v[tot] = now;
return;
}
dfs(p + 1 , c , now);
dfs(p + 1 , c + 1 , now + b[p]);
dfs(p + 1 , c - 1 , now + 2 * b[p]);
}
inline int l(int v , int p)
{
int i , c = 0;
for(i = p ; ~i ; i -- )
{
if(v / b[i] % 3 == 1) c -- ;
if(v / b[i] % 3 == 2) c ++ ;
if(!c) return i;
}
return -1;
}
inline int r(int v , int p)
{
int i , c = 0;
for(i = p ; i <= m ; i ++ )
{
if(v / b[i] % 3 == 1) c ++ ;
if(v / b[i] % 3 == 2) c -- ;
if(!c) return i;
}
return -1;
}
int main()
{
int n , i , j , k , x , y , p , q;
ll ans = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str + 1);
for(j = 1 ; j <= m ; j ++ )
{
if(str[j] == '.' || str[j] == '-') a[i][j] |= 1;
if(str[j] == '.' || str[j] == '|') a[i][j] |= 2;
if(str[j] != '#') x = i , y = j;
}
}
b[0] = 1;
for(i = 1 ; i <= m ; i ++ ) b[i] = b[i - 1] * 3;
dfs(0 , 0 , 0);
f[0][m][w[0]] = 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= tot ; j ++ )
if(v[j] % 3 == 0)
f[i][0][j] = f[i - 1][m][w[v[j] / 3]];
for(j = 1 ; j <= m ; j ++ )
{
for(k = 1 ; k <= tot ; k ++ )
{
p = v[k] / b[j - 1] % 3 , q = v[k] / b[j] % 3;
if((p && !(a[i][j] & 1)) || (q && !(a[i][j] & 2))) continue;
if(!a[i][j]) f[i][j][k] += f[i][j - 1][k];
else
{
if(!p && !q && a[i][j] == 3) f[i][j][w[v[k] + b[j - 1] + 2 * b[j]]] += f[i][j - 1][k];
if(!p && q && a[i][j] & 1) f[i][j][k] += f[i][j - 1][k];
if(p && !q && a[i][j] & 2) f[i][j][k] += f[i][j - 1][k];
if(!p && q) f[i][j][w[v[k] + q * (b[j - 1] - b[j])]] += f[i][j - 1][k];
if(p && !q) f[i][j][w[v[k] + p * (b[j] - b[j - 1])]] += f[i][j - 1][k];
if(p == 1 && q == 1) f[i][j][w[v[k] - b[j - 1] - b[j] - b[r(v[k] , j)]]] += f[i][j - 1][k];
if(p == 2 && q == 2) f[i][j][w[v[k] - 2 * (b[j - 1] + b[j]) + b[l(v[k] , j - 1)]]] += f[i][j - 1][k];
if(p == 2 && q == 1) f[i][j][w[v[k] - 2 * b[j - 1] - b[j]]] += f[i][j - 1][k];
if(p == 1 && q == 2 && i == x && j == y && v[k] == b[j - 1] + 2 * b[j]) ans += f[i][j - 1][k];
}
}
}
}
printf("%lld\n" , ans);
return 0;
}

【bzoj3125】CITY 插头dp的更多相关文章

  1. HDU 4064 Carcassonne(插头DP)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4064 Problem Description Carcassonne is a tile-based ...

  2. ural1519插头DP

    1519. Formula 1 Time limit: 1.0 second Memory limit: 64 MB Background Regardless of the fact, that V ...

  3. 插头DP学习笔记——从入门到……????

    我们今天来学习插头DP??? BZOJ 2595:[Wc2008]游览计划 Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该 ...

  4. RUAL1519 Formula 1 【插头DP】

    RUAL1519 Formula 1 Background Regardless of the fact, that Vologda could not get rights to hold the ...

  5. URAL 1519 Formula 1(插头DP,入门题)

    Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...

  6. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  7. bzoj3125: CITY 题解

    3125: CITY Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 486  Solved: 213[Submit][Status][Discuss] ...

  8. [专题总结]初探插头dp

    彻彻底底写到自闭的一个专题. 就是大型分类讨论,压行+宏定义很有优势. 常用滚动数组+哈希表+位运算.当然还有轮廓线. Formula 1: 经过所有格子的哈密顿回路数. 每个非障碍点必须有且仅有2个 ...

  9. 「总结」插头$dp$

    集中做完了插头$dp$ 写一下题解. 一开始学的时候还是挺蒙的. 不过后来站在轮廓线$dp$的角度上来看就简单多了. 其实就是一种联通性$dp$,只不过情况比较多而已了. 本来转移方式有两种.逐行和逐 ...

随机推荐

  1. 20155338 2006-2007-2 《Java程序设计》第2周学习总结

    20155338 2006-2007-2 <Java程序设计>第2周学习总结 教材学习内容总结 本周学习了教材的第三章内容,大体上都较好理解,有很多内容基本上都跟C语言的知识类似,学习的内 ...

  2. WPF 背景颜色渐变的滑动条实现

    原文:WPF 背景颜色渐变的滑动条实现 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/BYH371256/article/details/83507 ...

  3. Hibernate5使用注解方式(转)

    用Hibernate5使用映射文件时存在一个问题没有解决,在映射文件中配置了student_sequence,但找不到映射文件自增长的序列的sequence(Oracle)数据库. 输出的是 Hibe ...

  4. 详解UML图之类图

    产品经理的必备技能之一是画UML图,本文就告诉你怎么画标准的类图吧.本文结合网络资料和个人心得所成,不当之处,请多指教. 1.为什么需要类图?类图的作用 我们做项目的需求分析,最开始往往得到的是一堆文 ...

  5. Spring学习(六)-----Spring使用@Autowired注解自动装配

    Spring使用@Autowired注解自动装配 在上一篇 Spring学习(三)-----Spring自动装配Beans示例中,它会匹配当前Spring容器任何bean的属性自动装配.在大多数情况下 ...

  6. javaweb(十九)——JSP标签

    一.JSP标签介绍 JSP标签也称之为Jsp Action(JSP动作)元素,它用于在Jsp页面中提供业务逻辑功能,避免在JSP页面中直接编写java代码,造成jsp页面难以维护. 二.JSP常用标签 ...

  7. sqlite两表更新update

    1 2 3 4 5 6 7 8 9 10 11 12 UPDATE t1 SET Column1 =   ( SELECT Columnx    FROM t2    WHERE t2. KEY = ...

  8. Java的Graphics类进行绘图的方法详解

    Graphics类提供基本绘图方法,Graphics2D类提供更强大的绘图能力. Graphics类提供基本的几何图形绘制方法,主要有:画线段.画矩形.画圆.画带颜色的图形.画椭圆.画圆弧.画多边形等 ...

  9. Docker--从安装到搭建环境

    docker 1. ubuntu下安装docker 安装docker有两种方法: 一种是用官方的bash脚本一键安装. 直接一条命令就解决了: $ curl -sSL https://get.dock ...

  10. HTTP协议请求信息详解

    通常HTTP消息包括客户机向服务器的请求消息和服务器向客户机的响应消息.客户端向服务器发送一个请求,请求头包含请求的方法.URI.协议版本.以及包含请求修饰符.客户信息和内容的类似于MIME的消息结构 ...