GDKOI 2016

day 1

第一题 魔卡少女

题目描述:维护一个序列,能进行以下两个操作:1、将某一个位置的值改变。2、求区间的连续子串的异或值的和。

solution
因为序列的数的值都小于\(2^{10}\), 所以维护二进制的每一位的\(1\)的个数就可以了。用线段树维护即可。

时间复杂度:\(O(20nlogn)\)

第二题 不稳定的传送门

题目描述:一个有\(n\)个点,\(m\)条有向边的图,每条边有一个概率(能通过这条边的概率)和一个费用,先从\(1\)号点走到\(n\)号点,若选择某一条边通过时,通过失败,则自动返回出发的城市,该边之后不能通过,但无论成功与否,该边的费用依然要花费,求期望花费的最小值。

solution
这题是dp+贪心,从后往前dp。从若现在在第\(i\)号点进行决策,则可以通过贪心决策边的先后通过顺序。具体贪心方法是如果先通过第\(j\)条边再通过第\(k\)条边比先通过第\(k\)条边再通过第\(j\)条边优,则先通过\(j\),再通过\(k\)。可证明有传递性,所以可以用快排处理。

时间复杂度:\(O(nlogn)\)

第三题 寻宝

题目描述:最大权闭合子图

solution
经典裸题

第四题 地图

题目描述:连通性dp

solution
经典裸题

day2

第一题 染色大战

题目描述:状压dp

solution
经典裸题

第二题 QT 与泰剧

题目描述:求在\((T, S]\)中与\(S\)模\(3\)同余的且该数的每一位至少有一个数不是质数的数的个数。

solution
按位dp,只要把前导零,模\(3\)的余数处理好就没什么问题了。

第三题 项链

题目描述:若一个环状字符串删掉连续的一段后,连起来后是对称的(对称轴可穿过字符),称为项链,求项链的最长长度。

solution
如果一个字符串是项链,则这个字符串由两个回文串组成。先把字符串复制一遍。用manacher算出以每个字符为中心的回文串长度。然后枚举第一个回文串的右端,然后求以这右端为左端的回文串的最大值(两个回文串的长度的和不能大于原串),这可以用线段树或树状数组维护。

时间复杂度:\(O(4nlogn)\)

第四题 小学生数学题

题目描述:给出\(p,k,n\),求\((\sum_{i=1}^n i^{-1})\) \(mod\) \(p^k\),保证有解。

solution
其实就是要求从\(1\)到\(n\)的逆元的和模\(p^k\)的值。由于\(p\)的倍数没有逆元,所以要分开算。设
\[H(n)=(\sum_{i=1}^n i^{-1}) mod (p^k)\]
\[H^*(n)=(\sum_{i=1, p \nmid i}^n i^{-1}) mod (p^k)\]

\[H(n)=H(n/p)/p + H^*(n)\]
\[\because [H(n/p)/p]mod(p^k)=[H(n/p)] mod (p^{k+1})/p\]
\[\therefore H(n)=[H(n/p) mod (p^{k+1})]/p+H^*(n)\]
等式右边的第一项可以递归计算。
问题在于如何求\(H^*(n)\)
设\(i=ap+b\),\(i^{-1}=xp+y( mod (p^k))\)

\[(ap+b)(xp+y)=1 mod (p^k)\]
\[(ax+bpx+ayp+byp^2)=1 mod (p^k)\]
若\(x=a^{-1} mod (p^k)\)

\[(bx+ay+byp)=0 mod (p^{k-1})\]
\[(a+bp)y =(-bx) mod (p^{k-1})\]
设\((a+bp)z=1 mod (p^{k-1})\)

\[y=(-bxz) mod (P^{k-1})\]
\(\because z 存在 \therefore x可取\)

\[(a+bp)^{-1}=x[1+(-bxp)+(-bxp)^2+……+(-bxp)^{k-1}]\]
枚举\(a\),问题转化为求右式和,可用矩阵乘法+二项式定理

时间复杂度:\(O(pk^3logn*log_pn)\)

GDKOI 2016的更多相关文章

  1. 【GDKOI 2016】地图 map 类插头DP

    Description 对于一个n*m的地图,每个格子有五种可能:平地,障碍物,出口,入口和神器.一个有效的地图必须满足下列条件: 1.入口,出口和神器都有且仅出现一次,并且不在同一个格子内. 2.入 ...

  2. GDOI2017 再次酱油记

    Day 0 13:00 pm 啊...今天中午一点钟从ez出发,感觉吼有趣啊.出发前先大喊一声****,在书包里放一本党史,感觉玄学可以救命[滑稽] 15:00 pm 到达东莞,坐标:石龙名冠金凯悦大 ...

  3. Be Better:遇见更好的自己-2016年记

    其实并不能找到好的词语来形容过去的一年,感觉就如此平淡的过了!没有了毕业的稚气,看事情淡了,少了一丝浮躁,多了一分认真.2016也许就是那句话-多读书,多看报,少吃零食多睡觉,而我更愿意说--Be B ...

  4. Connect() 2016 大会的主题 ---微软大法好

    文章首发于微信公众号"dotnet跨平台",欢迎关注,可以扫页面左面的二维码. 今年 Connect 大会的主题是 Big possibilities. Bold technolo ...

  5. “.Net 社区虚拟大会”(dotnetConf) 2016 Day 3 Keynote: Scott Hanselman

    美国时间 6月7日--9日,为期三天的微软.NET社区虚拟大会正式在 Channel9 上召开,美国时间6.9 是第三天, Scott Hanselman 做Keynote.今天主题围绕的是.NET ...

  6. “.Net 社区虚拟大会”(dotnetConf) 2016 Day 2 Keynote: Miguel de Icaza

    美国时间 6月7日--9日,为期三天的微软.NET社区虚拟大会正式在 Channel9 上召开,美国时间6.8 是第二天, Miguel de Icaza 做Keynote,Miguel 在波士顿Xa ...

  7. “.Net 社区虚拟大会”(dotnetConf) 2016 Day 1 Keynote: Scott Hunter

    “.Net 社区虚拟大会”(dotnetConf) 2016 今天凌晨在Channel9 上召开,在Scott Hunter的30分钟的 Keynote上没有特别的亮点,所讲内容都是 微软“.Net社 ...

  8. 微软发布正式版SQL Server 2016

    微软于今天在SQL 官方博客上宣布 SQL Server 数据库软件的正式发布版本(GA),历时一年多,微软为该软件发布了多个公共预览版和候选版本,而今天最终版本终于上线了.在博客中,微软数据集团的企 ...

  9. Summary of Critical and Exploitable iOS Vulnerabilities in 2016

    Summary of Critical and Exploitable iOS Vulnerabilities in 2016 Author:Min (Spark) Zheng, Cererdlong ...

随机推荐

  1. win8上安装 Pillow

    1.确保正确安装pip(2.7.9默认安装) 2. pip install wheel 3.下载 pillow-*.whl 根据自己的电脑和python版本 地址 4.安装 pip install x ...

  2. JavaBean之属性必须遵循命名规范

    JavaBean中存在一些属性,今天写了一个Jsp的小例子.把Bean中的属性命名规范搞错了,具体的说属性的首字母大写了. 于是乎Jsp中读取属性时总是报错. javax.el.PropertyNot ...

  3. PHP配置xdebug

    其实已经做PHP超过2年了,但是今天特别有感触,所以把过程写在这里 环境是win7+apache2.2+php5.3,因为某种原因,必须使用这个版本. 然后就死活配置不出来.apache日志如下: [ ...

  4. perl 调用按钮输出到文本框

    sub push_b4 { #$txt -> insert('end'); #select $txt; system("expect c:\\\\expect.txt >expe ...

  5. Unity doesn't load, no Launcher, no Dash appears

    1. 重新安装 ubuntu-desktop不起作用. Enter the following commands:- Ctrl+Alt+F1 login there by user name and ...

  6. 爱加密亮相第十八届软博会,移动App安全引关注

    2014年5月29日至31日,2014年第十八届中国国际软件博览会在北京展览馆举行,此次软博会的主题为"软件引领信息消费,助力经济转型升级",充分展示软件业在促进信息消费.提升社会 ...

  7. 源码推荐(7.17):不规则按钮类似于遥控器按钮,一个可以最大程度简化PageView与TabView切换的第三方框架

    不规则按钮,类似于遥控器按钮,可以单独控制按钮的上下左右(作者:masa_chu) 不规则按钮,类似于遥控器按钮,可以单独控制按钮的上下左右 测试环境:Xcode 6.2,iOS 6.0以上 Lazy ...

  8. 好用的DNS服务器推荐

    DNS在平时上网中扮演重要角色,如果不注意DNS的话,可能会导致网速慢.弹窗广告.网址打不开.打开不是自己想要的网站.淘宝客劫持等一系列问题.针对DNS的问题,网络上也有各种DNS平台供用户选择.这里 ...

  9. 密码算法详解——DES

    0 DES简介 在20世纪60年代后期,IBM公司成立了一个由Horst Feistel负责的计算机密码学研究项目.1971年设计出密码算法LUCIFER后,该项目宣告结束.LUCIFER被卖给了伦敦 ...

  10. C#运算符的优先级

    在C#中,一共有38个常用的运用符,根据它们所执行运算的特点和它们的优先级,为了便于记忆,我将它们归为七个等级:1.单元运算符和括号.2.常规算术运算符.3.位移运算符.4.比较运算符.5.逻辑运算符 ...