Minimal coverage 

The Problem

Given several segments of line (int the X axis) with coordinates [Li,Ri]. You are to choose the minimal amount of them, such they would completely cover the segment [0,M].

The Input

The first line is the number of test cases, followed by a blank line.

Each test case in the input should contains an integer M(1<=M<=5000), followed by pairs "Li Ri"(|Li|, |Ri|<=50000, i<=100000), each on a separate line. Each test case of input is terminated by pair "0 0".

Each test case will be separated by a single line.

The Output

For each test case, in the first line of output your programm should print the minimal number of line segments which can cover segment [0,M]. In the following lines, the coordinates of segments, sorted by their left end (Li), should be printed in the same format as in the input. Pair "0 0" should not be printed. If [0,M] can not be covered by given line segments, your programm should print "0"(without quotes).

Print a blank line between the outputs for two consecutive test cases.

Sample Input

2

1
-1 0
-5 -3
2 5
0 0 1
-1 0
0 1
0 0

Sample Output

0

1
0 1

题意:给定一个M,和一些区间[Li,Ri]。。要选出几个区间能完全覆盖住[0,M]区间。要求数量最少。。如果不能覆盖输出0.

思路:贪心的思想。。把区间按Ri从大到小排序。 然后遇到一个满足的[Li,Ri],就更新缩小区间。。直到完全覆盖。

注意[Li,Ri]只有满足Li小于等于且Ri大于当前覆盖区间左端这个条件。才能选中。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int t;
int start, end, qn, outn;
struct M {
int start;
int end;
} q[100005], out[100005]; int cmp (M a, M b) {//按最大能覆盖到排序
return a.end > b.end;
}
int main() {
scanf("%d", &t);
while (t --) {
qn = 0; outn = 0; start = 0;
scanf("%d", &end);
while (~scanf("%d%d", &q[qn].start, &q[qn].end) && q[qn].start + q[qn].end) {
qn ++;
}
sort(q, q + qn, cmp);
while (start < end) {
int i;
for (i = 0; i < qn; i ++) {
if (q[i].start <= start && q[i].end > start) {
start = q[i].end;//更新区间
out[outn ++] = q[i];
break;
}
}
if (i == qn) break;//如果没有一个满足条件的区间,直接结束。
}
if (start < end) printf("0\n");
else {
printf("%d\n", outn);
for (int i = 0; i < outn; i ++)
printf("%d %d\n", out[i].start, out[i].end);
}
if (t) printf("\n");
}
return 0;
}

UVA 10020 Minimal coverage(贪心 + 区间覆盖问题)的更多相关文章

  1. UVa 10020 - Minimal coverage(区间覆盖并贪心)

    Given several segments of line (int the X axis) with coordinates [Li, Ri]. You are to choose the min ...

  2. uva.10020 Minimal coverage(贪心)

    10020 Given several segments of line (int the X axis) with coordinates [Li, Ri]. You are to choose t ...

  3. uva 10020 Minimal coverage 【贪心】+【区间全然覆盖】

    Minimal coverage The Problem Given several segments of line (int the X axis) with coordinates [Li,Ri ...

  4. 【区间覆盖问题】uva 10020 - Minimal coverage

    可以说是区间覆盖问题的例题... Note: 区间包含+排序扫描: 要求覆盖区间[s, t]; 1.把各区间按照Left从小到大排序,如果区间1的起点大于s,则无解(因为其他区间的左起点更大):否则选 ...

  5. UVA 10382 Watering Grass 贪心+区间覆盖问题

    n sprinklers are installed in a horizontal strip of grass l meters long and w meters wide. Each spri ...

  6. uva 10020 Minimal coverage

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  7. 高效算法——E - 贪心-- 区间覆盖

    E - 贪心-- 区间覆盖 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=85904#problem/E 解题思路: 贪心思想, ...

  8. 【题解】Cut the Sequence(贪心区间覆盖)

    [题解]Cut the Sequence(贪心区间覆盖) POJ - 3017 题意: 给定一大堆线段,问用这些线段覆盖一个连续区间1-x的最小使用线段的数量. 题解 考虑一个这样的贪心: 先按照左端 ...

  9. UVA 10382 - Watering Grass【贪心+区间覆盖问题+高精度】

    UVa 10382 - Watering Grass n sprinklers are installed in a horizontal strip of grass l meters long a ...

随机推荐

  1. Poj 2232 Moo Volume(排序)

    题目链接:http://poj.org/problem?id=2231 思路分析:先排序,再推导计算公式. 代码如下: #include <iostream> #include <a ...

  2. Scrambled Polygon(凸多边形,斜率)

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7805   Accepted: 3712 ...

  3. java代码发送JSON格式的httpPOST请求

    package com.test; import java.io.BufferedReader; import java.io.DataOutputStream; import java.io.IOE ...

  4. 原生JS实现字符串分割

    window.onload = function(){ var str = 'abc,dbc,qqq,aaa'; var sp = split(str,',')//与字符串的分隔符要一直. alert ...

  5. [译]Stairway to Integration Services Level 14 - 项目转换(SSIS 2008 ~ SSIS 2012)

    介绍 本文中我们会用SSDT把第一个SSIS项目转换为 SSIS 2012, 为什么要升级到2012? 你可能想使用SSIS 2012新的特性. 又或者想使用 SSIS 2012 Catalog. 想 ...

  6. levelDB缓存实现

    leveldb的缓存机制 leveldb采用LRU机制, 利用键的哈希值前n位作为索引, 将要插入的键值对分派到指定的缓存区, 当缓存区的使用率大于总容量后, 优先淘汰最近最少使用的缓存, 独立的缓存 ...

  7. javascript对象属性——数据属性和访问器属性

    ECMA-262第五版在定义时,描述了属性property的各种特征,定义这些特性是为了实现javascript引擎用的,为了表示该特性是内部值,规范把它们放在了两对儿方括号中,例如[[Enumera ...

  8. Definitions

    Definitions and ODR Definitions are declarations that fully define the entity introduced by the decl ...

  9. Arduino101 中使用 Mirf 库的问题(2016-04-04)

    Mirf 库在使用 NRF24L01 的时候接触到,感觉很好用.但在用 Arduino101 的时候遇到一些问题,记录一下,对于底层不了解,希望有熟悉的同学能给点指点: 编译会提示 MirfHardw ...

  10. JavaSE学习总结第04天_Java基础语法3

      04.01 选择结构switch语句的格式及其解释 switch语句的格式: switch(表达式) {    case 值1:语句体1;break;    case 值2:语句体2;break; ...