Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1, a2, ..., aN) be any sequence ( ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4
题意:输出最长递增子序列的长度
思路:直接裸LIS,第一次使用,使用两种方法
 
第一种:复杂度n^2
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std; int a[1005],dp[1005],n; int LIS()
{
int i,j,ans,m;
dp[1] = 1;
ans = 1;
for(i = 2;i<=n;i++)
{
m = 0;
for(j = 1;j<i;j++)
{
if(dp[j]>m && a[j]<a[i])
m = dp[j];
}
dp[i] = m+1;
if(dp[i]>ans)
ans = dp[i];
}
return ans;
} int main()
{
int i;
while(~scanf("%d",&n))
{
for(i = 1;i<=n;i++)
scanf("%d",&a[i]);
printf("%d\n",LIS()); } return 0;
}

第二种:nlogn

#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std; int a[1005],dp[1005],c[1005],n; int bin(int size,int k)
{
int l = 1,r = size;
while(l<=r)
{
int mid = (l+r)/2;
if(k>c[mid] && k<=c[mid+1])
return mid+1;
else if(k<c[mid])
r = mid-1;
else
l = mid+1;
}
} int LIS()
{
int i,j,ans=1;
c[1] = a[1];
dp[1] = 1;
for(i = 2; i<=n; i++)
{
if(a[i]<=c[1])
j = 1;
else if(a[i]>c[ans])
j = ++ans;
else
j = bin(ans,a[i]);
c[j] = a[i];
dp[i] = j;
}
return ans;
} int main()
{
int i;
while(~scanf("%d",&n))
{
for(i = 1; i<=n; i++)
scanf("%d",&a[i]);
printf("%d\n",LIS()); } return 0;
}
												

POJ2533:Longest Ordered Subsequence(LIS)的更多相关文章

  1. POJ2533:Longest Ordered Subsequence

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 37454   Acc ...

  2. poj 2533 Longest Ordered Subsequence(LIS)

    Description A numeric sequence of ai is ordered ifa1 <a2 < ... < aN. Let the subsequence of ...

  3. POJ-2533.Longest Ordered Subsequence (LIS模版题)

    本题大意:和LIS一样 本题思路:用dp[ i ]保存前 i 个数中的最长递增序列的长度,则可以得出状态转移方程dp[ i ] = max(dp[ j ] + 1)(j < i) 参考代码: # ...

  4. POJ 2533 Longest Ordered Subsequence LIS O(n*log(n))

    题目链接 最长上升子序列O(n*log(n))的做法,只能用于求长度不能求序列. #include <iostream> #include <algorithm> using ...

  5. 题解报告:poj 2533 Longest Ordered Subsequence(最长上升子序列LIS)

    Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence ...

  6. (线性DP LIS)POJ2533 Longest Ordered Subsequence

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 66763   Acc ...

  7. POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 6 ...

  8. POJ 2533 Longest Ordered Subsequence(LIS模版题)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 47465   Acc ...

  9. POJ2533——Longest Ordered Subsequence(简单的DP)

    Longest Ordered Subsequence DescriptionA numeric sequence of ai is ordered if a1 < a2 < ... &l ...

随机推荐

  1. JAVA GUI 工具

    Java GUI图形界面开发工具   上大学那会儿比较主流的Java图形开发插件是:Visual Editor 和 SWT Designer, 不久又出了个Jigloo, 但去官网看了下发现这个东西也 ...

  2. <Win32_5>深入浅出Win32的计时器

    说起时间,对于我们搞IT的人来说,那是要多重要有多重要.我觉得有价值的时间是给有抱负和有才能的人准备的,因为他们会充分利用,不会让时间失望…… 呵呵,有点儿说远了,还是回归主题吧 Win32的计时器其 ...

  3. CSS3 基础知识

    CSS3 基础知识1.边框    1.1 圆角  border-radius:5px 0 0 5px;    1.2 阴影  box-shadow:2px 3px 4px 5px rgba(0,0,0 ...

  4. Handlebars expressions

    Basic Usage 1,最简单的handlebars 表达式 <h1>{{title}}</h1> 使用时,会在当前context里找名为title的property,替换 ...

  5. C++第二课(2013.9.27 )

    //引用的作用:代码简洁 //形参和实参同地址,实现的方式和指针的一样 //引用和指针没有本质的区别 //强转引用 float f = 3.14f; cout<< hex << ...

  6. python学习第三天 --布尔类型

    我们已经了解了Python支持布尔类型的数据,布尔类型只有True和False两种值,但是布尔类型有以下几种运算: 与运算:只有两个布尔值都为 True 时,计算结果才为 True. True and ...

  7. boostrap 弹出模态对话框,点击黑色区域不会关闭

    $('#ID_ReformDetail').modal({ backdrop: 'static', keyboard: false }); 弹出模态对话框且点击黑色部分不会关闭. <div cl ...

  8. /users/products.:format 这种写法的其对应解析字符写法

    “products.:format" 这种写法可以有对应的下面两种路由形式 /products.json /products.xml "products.:format?" ...

  9. rsyslog VS syslog-ng,日志记录哪家强?

    还有慢慢摸索,NG的MYSQL配置,我始终没搞好. RSYSLOG则比较容易. 另外,也可以每个RSYSLOG直接入库,不需要经过LOG SERVER..如果有一个大内网的话... 配合LOGANAL ...

  10. PowerShell3.0中,所有的命令

    Get-Command * >> cmd.txt CommandType Name ModuleName ----------- ---- ---------- Alias % -> ...