大家好,我是小鸭酱,博客地址为:http://www.cnblogs.com/xiaoyajiang
以下是空调布线对Dijkstra算法的运用,采用C#实现。
问题:室内机多台,室外机一台。寻找室内机到室外机的最短路径
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Collections;
using System.Windows;
namespace shortestPath
{
class Program
{
const double INF = 429496729;//无路径时的权值
//--------------------------------------------------------------------------------*
//函数名: Dijkstra *
//功 能: 找出室内机组和室外机的最短路径(室内机室外机均指投影到最近的墙上的点)*
//参 数: cost : List<List<double>>类型 *
// n: int型 所有不重合节点个数,也是cost矩阵的阶 *
// v: int型 室内机的标号 *
// terminals: List<int>型 许多室外机的标号 *
//返 回:List<List<int>>类型 每行均为 每个室内机 → 室外机的路径 *
//作 者:小鸭酱的书签 *
//时 间:2016年3月28日 *
//修改时间: *
//---------------------------------------------------------------------------------*
static List<List<int>> Dijkstra(List<List<double>> cost, int n, int v, List<int> terminals)
{
List<List<int>> allRoutes = new List<List<int>>();//保存所有路径
List<double> dist = new List<double>();
List<int> s = new List<int>();
List<int> path = new List<int>();
double mindis;
int i, j, u, pre;
for (i = 0; i < n; i++)
{
dist.Add(cost[v][i]);
s.Add(0);
if (cost[v][i] < INF)
path.Add(v);
else
path.Add(-1);
}
s[v] = 1; //室外机编号v放入s中
path[v] = 0;
//循环直到所有顶点的最短路径都求出
for (i = 0; i < n; i++)
{
mindis = INF;
u = -1;
for (j = 0; j < n; j++) //选取不在s中且具有最小距离的顶点u
{
if (s[j] == 0 && dist[j] < mindis)
{
u = j;
mindis = dist[j];
}
}
if (u != -1) //找到最小距离的顶点u
{
s[u] = 1; //顶点u加入s中
for (j = 0; j < n; j++) //修改不在s中的顶点距离
{
if (s[j] == 0)
{
if (cost[u][j] < INF && dist[u] + cost[u][j] < dist[j])
{
dist[j] = dist[u] + cost[u][j];//修改源点到vj的距离
path[j] = u;//保存当前最短路径中的前一个顶点编号
}
}
}
}
}
//从室内机到室外机的最短路径
int index = 0;
for (i = 0; i < n; i++)
{
if (i != v)
{
if (s[i] == 1)
{
List<int> route = new List<int>();
pre = i;
while (pre != v) //直到求解到初始顶点
{
if (index < terminals.Count())
{
if (terminals[index] == i)
{
route.Add(pre);
}
}
pre = path[pre];
}
if (index < terminals.Count())
{
if (terminals[index] == i)
{
route.Add(pre);
}
}
if (index < terminals.Count())
{
if (terminals[index] == i)
{
allRoutes.Add(route);
index++;
if (index == terminals.Count())
return allRoutes;
}
}
}
}
}
return allRoutes;
}
static void Main(string[] args) // test
{
List<List<double>> cost = new List<List<double>>();
List<double> l1 = new List<double>() {INF,5,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,1,INF,INF};//1
List<double> l2 = new List<double>() {5,INF,INF,INF,INF,2,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,4,INF};//1
List<double> l3 = new List<double>() {INF,INF,INF,5,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,1,2};//1
List<double> l4 = new List<double>() {INF,INF,5,INF,INF,INF,INF,INF,INF,5,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l5 = new List<double>() {INF,INF,INF,INF,INF,5,INF,INF,INF,INF,INF,INF,INF,INF,10,INF,INF,INF,INF,INF,INF,1,INF,INF};//1
List<double> l6 = new List<double>() {INF,2,INF,INF,5,INF,3,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l7 = new List<double>() {INF,INF,INF,INF,INF,3,INF,5,INF,INF,2,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l8 = new List<double>() {INF,INF,INF,INF,INF,INF,5,INF,5,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,3};//1
List<double> l9 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,3,INF,2,INF,INF,2,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l10 = new List<double>() {INF,INF,INF,5,INF,INF,INF,INF,2,INF,INF,INF,INF,2,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l11 = new List<double>() {INF,INF,INF,INF,INF,INF,2,INF,INF,INF,INF,4,INF,INF,INF,5,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l12 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,4,INF,4,INF,INF,INF,5,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l13 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,2,INF,INF,4,INF,2,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l14 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,INF,2,INF,INF,2,INF,INF,INF,INF,5,INF,INF,INF,INF,INF,INF};//1
List<double> l15 = new List<double>() {INF,INF,INF,INF,10,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,2,INF,INF,INF};//1
List<double> l16 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,5,INF,INF,INF,INF,INF,4,INF,INF,INF,3,INF,INF,INF};//1
List<double> l17 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,5,INF,INF,INF,4,INF,6,INF,2,INF,INF,INF,INF};//1
List<double> l18 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,5,INF,INF,6,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l19 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,8,2,INF,INF,INF};//1
List<double> l20 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,2,INF,8,INF,INF,INF,INF,INF};//1
List<double> l21 = new List<double>() {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,2,3,INF,INF,2,INF,INF,INF,INF,INF};//1
List<double> l22 = new List<double>() {1,INF,INF,INF,1,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l23 = new List<double>() {INF,4,1,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
List<double> l24 = new List<double>() {INF,INF,2,INF,INF,INF,INF,3,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF};//1
cost.Add(l1);
cost.Add(l2);
cost.Add(l3);
cost.Add(l4);
cost.Add(l5);
cost.Add(l6);
cost.Add(l7);
cost.Add(l8);
cost.Add(l9);
cost.Add(l10);
cost.Add(l11);
cost.Add(l12);
cost.Add(l13);
cost.Add(l14);
cost.Add(l15);
cost.Add(l16);
cost.Add(l17);
cost.Add(l18);
cost.Add(l19);
cost.Add(l20);
cost.Add(l21);
cost.Add(l22);
cost.Add(l23);
cost.Add(l24);
List<int> terminals = new List<int>(){22,23};
int v = 21;
List<List<int>> result = new List<List<int>>();
result = Dijkstra(cost, 24, v, terminals);
}
}
}
- 求两点之间最短路径-Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...
- Dijkstra算法优先队列实现与Bellman_Ford队列实现的理解
/* Dijkstra算法用优先队列来实现,实现了每一条边最多遍历一次. 要知道,我们从队列头部找到的都是到 已经"建好树"的最短距离以及该节点编号, 并由该节点去更新 树根 到其 ...
- 关于dijkstra算法的一点理解
最近在准备ccf,各种补算法,图的算法基本差不多看了一遍.今天看的是Dijkstra算法,这个算法有点难理解,如果不深入想的话想要搞明白还是不容易的.弄了一个晚自习,先看书大致明白了原理,就根据书上的 ...
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)
关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...
- Dijkstra算法(二)之 C++详解
本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...
- Dijkstra算法(一)之 C语言详解
本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...
- 最短路问题Dijkstra算法
Dijkstra算法可以解决源点到任意点的最短距离并输出最短路径 准备: 建立一个距离数组d[ n ],记录每个点到源点的距离是多少 建立一个访问数组v[ n ],记录每个点是否被访问到 建立一个祖先 ...
- dijkstra算法求最短路
艾兹格·W·迪科斯彻 (Edsger Wybe Dijkstra,1930年5月11日~2002年8月6日)荷兰人. 计算机科学家,毕业就职于荷兰Leiden大学,早年钻研物理及数学,而后转为计算学. ...
- 数据结构之Dijkstra算法
基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求 ...
随机推荐
- Greatest common divisor(gcd)
欧几里得算法求最大公约数 If A = 0 then GCD(A,B)=B, since the GCD(0,B)=B, and we can stop. If B = 0 then GCD(A,B) ...
- 自制单片机之九……写给对制做并口ISP下载线有疑惑的朋友
一.器件的选用 制做并口ISP下载在网上有很多的电路和对应的PC端下载软件.很多人疑惑,不知该用哪张图,用哪个下载软件.我看了一下,采用的器件主要是74HC373.74HC541和74HC244.其实 ...
- WPF中使用文件浏览对话框的几种方式
原文:WPF中使用文件浏览对话框的几种方式 WPF本身并没有为我们提供文件浏览的控件, 也不能直接使用Forms中的控件,而文件浏览对话框又是我们最常用的控件之一. 下面是我实现的方式 方式1: 使用 ...
- CH Round #53 -GCD Path
描述 给定一张N个点的有向图,点i到点j有一条长度为 i/(gcd(i,j))的边.有Q个询问,每个询问包含两个数x和y,求x到y的最短距离. 输入格式 第一行包含两个用空格隔开的整数,N和Q. 接下 ...
- 基于Bootstrap 3.x的免费高级管理控制面板主题:AdminLTE
AdminLTE 是一个基于Bootstrap 3.x的免费高级管理控制面板主题.AdminLTE - 是一个完全响应式管理模板.基于Bootstrap3框架.高度可定制的,易于使用.适合从小型移动设 ...
- Linux下PHP安装配置MongoDB数据库连接扩展
Web服务器: IP地址:192.168.21.127 PHP安装路径:/usr/local/php 实现目的: 安装PHP的MongoDB数据库扩展,通过PHP程序连接MongoDB数据库 具体操作 ...
- js基础例子购物车升级版(未优化版)
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- User Defined Runtime Attributes
设置View borderWidth/cornerRadius/borderColor 为了兼容CALayer 的KVC ,你得给CALayer增加一个分类 CALayer+BorderColor.h ...
- web请求的处理流程
web请求的处理流程如下: 1.客户发起请求到服务器网卡:2.服务器网卡接受到请求后转交给内核处理:3.内核根据请求对应的套接字,将请求交给工作在用户空间的Web服务器进程4.Web服务器进程根据用户 ...
- 设置程序图标-初识IOS
相信我们都很喜欢做出的程序弄成自己的图标. 在创建项目过后显示的页面中,选择App lcons and launch images, 点击App lcons Source 之后的方向符号,把里面的东 ...