POJ burnside&&polya整理练习
POJ 2409 Let it Bead
这题就是polya公式的直接套用,唯一麻烦的是置换群的种类数,由于可以翻转,所以除了要加上pow(c,gcd(s,i))这些平面旋转的置换群,还要加上翻转的。由于翻转的情况奇偶是不同的,所以需要分开讨论:偶数:pow(c,(s-2)/2+2)*(s/2)+pow(c,(s/2))*(s/2);(里面包含了两个对点和两个对边的旋转) 奇数:pow(c,(s-1)/2+1)*s;(一个点和对边的旋转)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int gcd(int a,int b)
{
if(b==0)
{
return a;
}
else
{
return gcd(b,a%b);
}
}
int pow(int x,int y)
{
int i,j=1;
for(i=0;i<y;++i)
{
j*=x;
}
return j;
}
int main()
{
int c,s,i,j,ans,sum;
while(1)
{
RD(c);
RD(s);
if(c==0&&s==0)
{
break;
}
sum=0;
for(i=1;i<=s;++i)
{
sum+=pow(c,gcd(i,s));//通用做法,而且数据量很小。
}
if(s%2==0)//注意题意,这题的图案是可以翻转的,但并不是所有题目都这样,注意观察
{
sum+=pow(c,(s-2)/2+2)*(s/2)+pow(c,(s/2))*(s/2);
}
else
{
sum+=pow(c,(s-1)/2+1)*s;
}
ans=sum/(2*s);
printf("%d\n",ans);
}
return 0;
}
POJ 1286 Necklace of Beads
典型的买一送一题,和上题一样,都是套用公式题目,这题和上题相比,还少了可以翻转的条件,而且颜色数量固定为3,所以就不过多赘述了。但要注意N=0时要特判一下,输出0。而且数据范围比之前那题大,要使用long long。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int gcd(int a,int b)
{
if(b==0)
{
return a;
}
else
{
return gcd(b,a%b);
}
}
long long pow(int x,int y)//注意数据范围,3的18次方就超了
{
int i;
long long j=1;
for(i=0; i<y; ++i)
{
j*=x;
}
return j;
}
int main()
{
int s,i;
long long ans,sum;
while(1)
{
scanf("%d",&s);
if(s==-1)
{
break;
}
if(s==0)
{
printf("0\n");
}
else
{
sum=0;
for(i=1; i<=s; ++i)
{
sum+=pow(3,gcd(i,s));
}
if(s%2==0)
{
sum+=pow(3,(s-2)/2+2)*(s/2)+pow(3,(s/2))*(s/2);
}
else
{
sum+=pow(3,(s-1)/2+1)*s;
}
ans=sum/(2*s);
printf("%lld\n",ans);
}
}
return 0;
}
POJ 2154 Color
这题就不是简单的套用公式就可以过了,由于数据量很大,所以我们就需要使用筛素数结合欧拉函数求解的方式优化复杂度。而且数据范围的原因,很多人为了图省事,确保不会吵范围就用long long定义了事,却发现TLE,所以在写这题是必须还是要使用int定义,而且需要在很多地方取模。注意:快速幂部分取模一定要频繁,每个数在进行运算之前都需要取模。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int N;
int p(int x,int y)//取模一定要反复,我就是因为这个WA的
{
int res=1;
while(y>0)
{
if(y%2==1)
{
res=(res%N)*(x%N)%N;
}
x=(x%N)*(x%N)%N;
y/=2;
}
return res%N;
}
int e(int n)
{
int ans=1,i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
{
ans*=i-1;
n/=i;
while(n%i==0)
{
ans*=i;
n/=i;
}
}
}
if(n>1)
{
ans*=n-1;
}
return ans;
}
int main()
{
int i,t,s;
__int64 sum;
RD(t);
while(t--)
{
scanf("%d%d",&s,&N);
sum=0;
for(i=1; i*i<=s; ++i)
{
if(s%i==0)
{
sum=(sum+e(s/i)%N*p(s,i-1))%N;//这是求polya计数的通用优化方式
if(i*i!=s)
{
sum=(sum+e(i)%N*p(s,s/i-1))%N;//也要注意取模方式
}
}
}
printf("%I64d\n",sum%N);
}
return 0;
}
POJ 2888 Magic Bracelet
超好的组合题,这题是burnside的范围,因为burnside求有限制条件的组合数是很有效果的。这题用到了很多知识burnside+矩阵乘+矩阵快速幂+快速幂取模+欧拉函数+筛素数法+离散数学的知识。运用离散数学的知识将珠子的组合关系建图,转化为矩阵就是1为a和b可联通,0为a和b不可相联。而此矩阵的k次方就代表了经过k条路到达的方案数。
然后再结合欧拉函数优化就可以得到答案了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 9973
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int s,m,k,tx[11][11],ty[11][11],tz[11][11];
int p(int x,int y)//快速幂取模
{
int res=1;
x=x%N;
while(y>0)
{
if(y%2==1)
{
res=(res*x)%N;
}
x=(x*x)%N;
y/=2;
}
return res%N;
}
int e(int n)//欧拉函数优化
{
int ans=1,i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
{
ans*=i-1;
n/=i;
while(n%i==0)
{
ans*=i;
n/=i;
}
}
}
if(n>1)
{
ans*=n-1;
}
return ans%N;//注意取模,不然会超
}
void mat(int a[11][11],int b[11][11])//矩阵乘
{
int d[11][11],i,j,l;
mem(d,0);
For(0,m,i)
{
For(0,m,j)
{
For(0,m,l)
{
d[i][j]=(d[i][j]+a[i][l]*b[l][j])%N;
}
}
}
For(0,m,i)
{
For(0,m,j)
{
a[i][j]=d[i][j];
}
}
}
int g(int x)
{
mem(ty,0);
int i,j,ans;
For(0,m,i)
{
For(0,m,j)
{
tz[i][j]=tx[i][j];
}
}
For(0,m,i)
{
ty[i][i]=1;
}
while(x>0)//矩阵快速幂
{
if(x%2==1)
{
mat(ty,tz);
}
mat(tz,tz);
x/=2;
}
ans=0;
For(0,m,i)
{
ans=(ans+ty[i][i])%N;
}
return ans;
}
int main()
{
int i,j,t,a,b;
int sum;
RD(t);
while(t--)
{
RD(s);
RD(m);
RD(k);
For(0,m,i)
{
For(0,m,j)
{
tx[i][j]=1;
}
}
For(0,k,i)
{
RD(a);
RD(b);
a--;
b--;
tx[a][b]=tx[b][a]=0;//建图
}
sum=0;
for(i=1; i*i<=s; ++i)
{
if(s%i==0)//其他过程与上题类似
{
sum=(sum+(e(s/i)*g(i))%N)%N;
if(i*i!=s)
{
sum=(sum+(e(i)%N*g(s/i))%N)%N;
}
}
}
printf("%d\n",(sum*(p(s,N-2)%N))%N);
}
return 0;
}
burnside&&polya还有很多神奇的应用,希望可以与大家多多交流经验~
POJ burnside&&polya整理练习的更多相关文章
- burnside+polya 整理
先定义几个含义和符号:起始状态/方法/位置/元素/:以染色为例,起始状态是所有的染色方案,方法是以起始状态所有染色方案为基准转变为新的染色情景的操作(如旋转),位置则必须是没有任何染色效果的抽象空间, ...
- Burnside&Polya总结
这里就算是一个小总结吧- 附参考的网址: http://blog.sina.com.cn/s/blog_6a46cc3f0100s2qf.html http://www.cnblogs.com/han ...
- Burnside&Polya总结
这里就算是一个小总结吧- 附参考的网址: http://blog.sina.com.cn/s/blog_6a46cc3f0100s2qf.html http://www.cnblogs.com/han ...
- Burnside&Polya
以前只是直接用了这两个式子..今天才仔细看了证明..[网上的真是难懂啊 我看的几个博客地址(各有优缺): 其实如果能懂的话 只看博客B就可以了 首先是一些置换群方面的定义和性质 博客A:http:/ ...
- bzoj1004 [HNOI2008]Cards【Burnside/Polya】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 一道好题,但并不是好在融合了三个“考点”(计数,背包dp,逆元),其实背包dp以及求逆 ...
- poj 1286 polya定理
Necklace of Beads Description Beads of red, blue or green colors are connected together into a circu ...
- poj 2409(polya定理模板)
题意:给你n种颜色和m个小球,问你有多少种不同的方案! 分析:作为模板.. 代码实现: #include <iostream> #include <cstdio> #inclu ...
- 等价类计数:Burnside引理 & Polya定理
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...
- Polya计数
Let it Bead Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5365 Accepted: 3585 Descr ...
随机推荐
- OD: File Vulnerabilities & Protocols & Fuzz
IE.Office 等软件有个共同点,即用文件作为程序的主要输入,但攻击者往往会挑战程序员的假定和假设. 文件格式 Fuzz 就是利用畸形文件测试软件的稳健性,其流程一般包括: * 以一个正常文件作为 ...
- file控件change事件触发问题
最近,项目中需要用到一个图片上传的功能,我用的file控件来选取图片文件,然后利用js读取文件来预览图片,最后再根据用户的操作来决定是否上传文件. 其中碰到了一个奇怪的问题:在选取完第一张图片,并上传 ...
- HTML中常用鼠标样式
语法:cursor : auto | all-scroll | col-resize| crosshair | default | hand | move | help | no-drop | not ...
- C++ 文本读写
写文件: ofstream of; of.open("test.txt"); string content = "abcd"; of.write(content ...
- javaScript 自定义事件、发布订阅设计模式
现在很多应用都允许用户根据自己的喜好订阅一些自己较为关注的信息,当应用更新了这些信息后将针对不同的订阅类型推送此类信息.例如xx招聘网,当你订阅了互联网IT技术相关分类的招聘信息推送后,当企业在该网站 ...
- 武汉科技大学ACM:1003: 华科版C语言程序设计教程(第二版)例题6.6.改编
Problem Description 小明明最喜欢学英语了,英语课从来不翘课,但是英语却一直没学好,因为上课一直在睡觉.为什么会睡觉呢,因为他觉得英文单词太长了.现在小明明有一个很长很长很长的单词, ...
- bootstrap兼容IE8的一些注意
准备 bootstrap 3.3.5 jQuery 1.12.0 注意 支持html5 需要引入html5.js 支持placeholder 需要引入placeholder.js ie8 不支持 fo ...
- 删除Excel中的打印预览留下的打印线
Excel 工作表打印后,会留有几条虚线打印线.如下图所示: 不少同学反映,他们尝试了很多操作却仍然无法消除.难道除了重新打开就没有别的办法了? 可以这样做: 在 Excel 2010 中,单 ...
- [LeetCode 119] - 杨辉三角形II(Pascal's Triangle II)
问题 给出一个索引k,返回杨辉三角形的第k行. 例如,给出k = 3,返回[1, 3, 3, 1] 注意: 你可以优化你的算法使之只使用O(k)的额外空间吗? 初始思路 首先来复习复习杨辉三角形的性质 ...
- 3个QT新闻网,2个发烧友网站
http://planet.qt.io/ http://blog.basyskom.com/2015/introducing-qtopcua/ http://www.qtworldsummit.com ...