洛谷——P3389 【模板】高斯消元法
P3389 【模板】高斯消元法
以下内容都可省略,直接转大佬博客%%%
高斯消元总结
只会背板子的蒟蒻,高斯消元是什么,不知道诶,看到大佬们都会了这个水题,蒟蒻只好也来切一切
高斯消元最大用途就是解多元一次方程组——引自某大佬原话
的确是这样的,那么如何去做呢?
类比二元一次方程组:
$a_1x+b_1y=c_1$
$a_2x+b_2y=c_2$
emmm,怎么做呢?消去一项!嗯。
也就是把第$i$个方程的第$i$项变成1
$\frac{a_1}{a_1}x+\frac{b_1}{a_1}y=\frac{c_1}{a_1}$
也就是$x+\frac{b_1}{a_1}y=\frac{c_1}{a_1}$
再用这个式子消去第$i+1$到$n$方程的第$i$项,
$\frac{a_2}{a_2}x+\frac{b_2}{a_2}y=\frac{c_2}{a_2}$
也就是$x+\frac{b_2}{a_2}y=\frac{c_2}{a_2}$
用这一项减去上一项$0+(\frac{b_2}{a_2}-\frac{b_1}{a_1})y=\frac{c_2}{a_2}-\frac{c_1}{a_1}$
由于将每一项的系数都化为一比较麻烦,我们尝试直接消去那一项
$a_1x+b_1y=c_1$
$a_2x+b_2y=c_2$
第二项变成$a_2\times \frac{a_1}{a_2}x+b_2\times \frac{a_1}{a_2}y=c_2\times \frac{a_1}{a_2}$
消去第一项$(a_2\times \frac{a_1}{a_2}-a_1)x+(b_2\times \frac{a_1}{a_2}-b_1)y=c_2\times \frac{a_1}{a_2}-c_1$
这样是可行的,同样是把第二个方程组的第一项系数化为$0$
for(int i=;i<=n;i++){
if(!a[i][i]) return puts("No Solution\n"),;
for(int j=i+;j<=n;j++)
for(int k=n+;k>=i;k--)
a[j][k]=a[j][k]*a[i][i]/a[j][i]-a[i][k];
}//消元
不过大佬们都是这样写的,见代码:
$a_1x+b_1y=c_1$
$(a_2-\frac{a_2}{a_1}\times a_1)x+(b_2-\frac{a_2}{a_1}\times b_1)y=c_2-\frac{a_2}{a_1}\times c_1$
貌似这才是正确的操作,相当于把第一个方程同除以$a_1$,第二个方程减去$a_2\times...$
回代过程略。。。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm> using namespace std; double a[][],x[];
int n; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)//n个方程
for(int j=;j<=n+;j++)//n项以及最后c
scanf("%lf",&a[i][j]); for(int i=;i<=n;i++){//枚举每一方程
if(!a[i][i]) return puts("No Solution\n"),;
for(int j=i+;j<=n;j++)
for(int k=n+;k>=i;k--)
a[j][k]-=a[i][k]*a[j][i]/a[i][i];
}//消元 for(int i=n;i;i--){
x[i]=a[i][n+];
for(int j=n;j>i;j--) x[i]-=a[i][j]*x[j];
x[i]/=a[i][i];
}//回代
for(int i=;i<=n;i++)
printf("%.2lf\n",x[i]); return ;
}
洛谷——P3389 【模板】高斯消元法的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷P3385 [模板]负环 [SPFA]
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...
- [洛谷P3806] [模板] 点分治1
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...
随机推荐
- 在canvas上面绘制图片--drawImage实例
在canvas上面绘制图片--drawImage实例 关键点: 1.图片居中 2.其它 <!DOCTYPE html> <html lang="zh-cn"> ...
- java获取本周 上周的所有日期
1 根据当前日期获得所在周的日期区间(周一和周日日期) public String getTimeInterval(Date date) { Calendar cal = Calendar.getIn ...
- 【USACO 2010FEB】 slowdown
[题目链接] 点击打开链接 [算法] dfs序 + 线段树 树链剖分同样可以解决这个问题 [代码] #include<bits/stdc++.h> using namespace std; ...
- easyui-filebox 文件上传
参考文章:http://blog.csdn.net/fsdad/article/details/73200618 easyui论坛:http://www.jeasyui.com/forum/index ...
- J201700526-hm
プレーンテキスト 纯文本 きも 肝 リレーショナル 亲属的,相关的,有关的; ギャップ 缺口; 间隔; 分歧;
- 基于.Net Core的API框架的搭建(3)
5.加入缓存支持 我们希望为项目增加缓存支持,我们选择Redis做为缓存数据库. 首先,我们在Services目录增加一个缓存接口类ICacheService: using System; using ...
- JavaScript--DOM访问子结点childNodes
访问子结点childNodes 访问选定元素节点下的所有子节点的列表,返回的值可以看作是一个数组,他具有length属性. 语法: elementNode.childNodes 注意: 如果选定的节点 ...
- [Qt Creator 快速入门] 第9章 国际化、帮助系统和Qt插件
一.国际化 国际化的英文表述为Internationalization,通常简写为I18N(首尾字母加中间的字符数),一个应用程序的国际化就是使该应用程序可以让其他国家的用户使用的过程. Qt支持现在 ...
- [C和指针] 6-指针
6.1 内存和地址 我们可以把计算机的内存看作是一条长街上的一排房屋,每座房子都可以容纳数据,并通过一个房号来标识. 这个比喻颇为有用,但也存在局限性.计算机的内存由以亿万计的位(bit)组成,每个位 ...
- 洛谷 P2881 [USACO07MAR]排名的牛Ranking the Cows
题应该是假的...先不做了 https://www.cnblogs.com/Blue233333/p/7249057.html 比如输入5 0,答案是10,但可以比较8次就出来.就是在一个已知有序数列 ...