一个蒟蒻来口胡$SG$函数与$SG$定理。

要是发现有不对之处望指教。

首先我们来了解一下$Nim$游戏。

$Nim$游戏是公平组合游戏的一种,意思是当前可行操作仅依赖于当前局势。

而经典$Nim$游戏是指,一个地方放了$n$堆棋子,每堆棋子数目$a_i$给定。

两人轮流操作,每次操作从一堆中拿出任意数量的棋子。即最少拿一个,最多拿完。

拿完棋子的人胜。

如果两人都执行最优决策的话,胜负在刚开局时就已经确定了。

而在最有决策下,$Nim$游戏的胜负计算方式是:

若每堆棋子数量a_1^a_2^a_3^……^a_n=0则先手负,反之先手胜。

好像很玄学,怎么证明?

假设开局时a_1^a_2^a_3^……^a_n=0,

先手取走其中一堆的一些棋子,假设在$a_1$中去,那么式子变为a_1^a_2^a_3^……^a_n=k且$k!=0$。

此时一定存在一个$a_i$,满足二进制下$a_i$在$k$的最高位为$1$。

此时只要将$a_i$变为a_i ^ k,那么这$n$个数的异或和依然为$0$。

比如,原来集合中有{2,4,6},满足2^4^6=0;

先手拿走了6的一整堆,此时2^4^0=6;

而4与6满足性质,此时只需要让4变为4^6=2即可。

先手后手一直在拿走棋子,使得总数一直在减小,减小到的终点即0^0^0^……^0=0。

就一定是后手胜啦。

后来出题人们搞出了好多类似$Nim$游戏的博弈问题,而归根结底处理方法依然可以用异或法。

这就又衍生出了$SG$函数和$SG$定理。

先定义一下$mex$运算。

$mex$指对于一个非负整数集合不在其中的最小数

举个例子,mex{}=0,mex{0,1,2,3}=4,mex{1,2,3,4,5}=0。

回到$SG$函数。

对于一个局势,不同的操作会产生不同的后果,产生不同的新局势。

当前局势的$SG$函数值,等于所有后继局势的$SG$函数的$mex$值。

比如说,当$Nim$游戏中只有一堆棋子时,对于每个棋子数$SG$函数计算如下:

SG[0]=mex{}=0

SG[1]=mex{0}=1

SG[2]=mex{0,1}=2

SG[3]=mex{0,1,2}=3

等等。

有什么用呢?

一个局势是$P-position$(先手必败)当且仅当其$SG$函数值为$0$。

哇好厉害啊。

接下来上$SG$定理:

对于任意有限多个公平组合游戏的组合,其$SG$函数值等于所有子游戏$SG$函数值的异或和。

能不能理解为,第一个游戏有好几堆棋子,第二个游戏有好几堆棋子……

结果整个游戏就是好几堆棋子,其$SG$函数等于所有堆的$SG$函数的异或和。

大概

就这些了。

模板靠手速,博弈靠智商

(o_o)

SG定理与SG函数的更多相关文章

  1. 简单易懂的博弈论讲解(巴什博弈、尼姆博弈、威佐夫博弈、斐波那契博弈、SG定理)

    博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时 ...

  2. SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  3. SG函数&&SG定理

    必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的 ...

  4. (转载)--SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  5. 组合游戏 - SG函数和SG定理

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  6. SG函数和SG定理(Sprague_Grundy)

    一.必胜点和必败点的概念 P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的性质:     ...

  7. HDU 1851 (巴什博奕 SG定理) A Simple Game

    这是由n个巴什博奕的游戏合成的组合游戏. 对于一个有m个石子,每次至多取l个的巴什博奕,这个状态的SG函数值为m % (l + 1). 然后根据SG定理,合成游戏的SG函数就是各个子游戏SG函数值的异 ...

  8. HDU5795A Simple Nim SG定理

    A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  9. HDU5724 Chess(SG定理)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5724 Description Alice and Bob are playing a spe ...

随机推荐

  1. linux 问题二 查看系统是32位还是64位

    方法: 1.uname -a 2.uname -m 3.file /sbin/init 4.arch 5.Settings -> Details 说明: 1. i386 适用于intel和AMD ...

  2. Codeforces731F Video Cards

    考虑每个数在最大值内的倍数都求出来大概只有max(ai)ln(max(ai))个. 先排个序,然后对于每个数ai,考虑哪些数字可以变成ai*k. 显然就是区间[ai*k,ai*(k+1))内的数,这个 ...

  3. 第二类Stirling数初探 By cellur925

    上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...

  4. yield 为什么不能进入回调函数

    操他妈的, allowed_domains = ['voice.hupu.com'] 这里面必须是域名,而不能是个路径,遇见问题不要瞎几把想,及时Google才是正道!!!!!!!!!11 感谢: h ...

  5. iOS 跷跷板动画 Seesaw Animation

    Xcode Playgound示例代码: let testView = UIView() testView.frame = CGRect.init(x: , y: , width: , height: ...

  6. SpringBoot | 读取配置文件信息

    server.port=8081 #修改端口号 server.servlet.context-path= /SpringBoot #修改URL #自定义配置 tz.name = xiaoming tz ...

  7. Python递归和迭代

    递归 在函数内部,调用函数自身的编程技巧称为递归( recursion).递归函数结构清晰,很直观的理解计算过程,但也有严重缺点:相对于普通循环而言,递归运行效率较低,经过很多冗余的计算,递归会消耗大 ...

  8. Building Forest CodeForces - 195E

    Building Forest CodeForces - 195E 这题意真是难懂啊...话说"An oriented weighted forest is an acyclic weigh ...

  9. WPF学习12:基于MVVM Light 制作图形编辑工具(3)

    本文是WPF学习11:基于MVVM Light 制作图形编辑工具(2)的后续 这一次的目标是完成 两个任务. 本节完成后的效果: 本文分为三个部分: 1.对之前代码不合理的地方重新设计. 2.图形可选 ...

  10. html5新增的主题结构元素

    article元素 article元素代表文档.页面或应用程序中独立的.完整的.可以独自被外部引用的内容. 它可以是一篇博客或者报刊中的文章,一篇论坛帖子.一段用户评论或独立的插件. 或其他任何独立的 ...