题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数数加上x

2.求出某一个数的值

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含2或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x 含义:输出第x个数的值

输出格式:

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入样例#1:

5 5
1 5 4 2 3
1 2 4 2
2 3
1 1 5 -1
1 3 5 7
2 4
输出样例#1:

6
10

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=10000,M<=10000

对于100%的数据:N<=500000,M<=500000

样例说明:

故输出结果为6、10

解题思路:前面已经讲过树状数组的单点修改,单点(区间)查询了。对于这道题要求的是区间修改,单点查询,怎么实现呢?首先来引入差分思想:假设原数组为A[],差分数组为d[],树状数组为C[](C数组和单点修改那个树状数组一样记录着某段区间的总和),则差分数组d[i]=A[i]-A[i-1](A[0]=0),即记录当前i位置的元素与前一个元素的差值,那么单点查询A[i]的值只需求d[i]的前缀和,即(A[i]=d[1]+d[2]+...+d[i])。区间修改怎么利用差分数组呢?举个例子:设A[]={1,5,4,2,3},那么d[]={1,,-1,-2,},树状数组C[]={1,,-1,2,},假设区间[2,4]中每个元素都加上2,则A[]={1,7,6,4,3},那么d[]={1,,-1,-2,-1},树状数组C[]={1,,-1,4,-1},修改后可以发现d数组中只有d[2]和d[5]改变了,而且d'[2]=d[2]+2=+2=,d'[5]=d[5]-2=-2=-1,并且区间[3,4]中每个元素的差值d[i]不变,这是因为区间[2,4]中每个元素是同时加上2的。因此,当对区间[l,r]中每个元素加上k(区间修改)时,因为A[l]与前一个元素A[l-1]的差值增加了k,A[r+1]与A[r]的差值减少了k,所以只需对差分树组进行操作:d[l]+=k,d[r+1]-=k,又因为树状数组维护着差分数组,所以实际效果上也是对树状数组进行操作:C[l]+=k,C[r+1]-=k。输入的时候只需将差分数组建树,其他代码操作基本不变,单点查询时只需调用一次query(x)即可。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=5e5+;
int n,m,p,x,y;LL k,C[maxn],val[maxn];//C为差分数组
void add(int x,LL val){
while(x<=n){C[x]+=val;x+=(x&-x);}
}
LL query(int x){
LL ans=;
while(x>){ans+=C[x];x-=(x&-x);}
return ans;
}
int main(){
while(~scanf("%d%d",&n,&m)){
memset(C,,sizeof(C));val[]=;//注意val[0]要初始化为0
for(int i=;i<=n;++i){
scanf("%lld",&val[i]);
add(i,val[i]-val[i-]);//差分思想
}
while(m--){
scanf("%d",&p);
if(p==){scanf("%d%d%lld",&x,&y,&k);add(x,k);add(y+,-k);}
else{scanf("%d",&x);printf("%lld\n",query(x));}//单点查询
}
}
return ;
}

题解报告:Luogu P3368 【模板】树状数组 2(区间修改,单点查询)的更多相关文章

  1. 洛谷 P3368 【模板】树状数组 2(区间修改点查询)

    题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的值 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...

  2. hdu1556树状数组的区间更新单点查询

    Color the ball Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  3. 【LuoguP3038/[USACO11DEC]牧草种植Grass Planting】树链剖分+树状数组【树状数组的区间修改与区间查询】

    模拟题,可以用树链剖分+线段树维护. 但是学了一个厉害的..树状数组的区间修改与区间查询.. 分割线里面的是转载的: ----------------------------------------- ...

  4. POJ 2155 Matrix 【二维树状数组】(二维单点查询经典题)

    <题目链接> 题目大意: 给出一个初始值全为0的矩阵,对其进行两个操作. 1.给出一个子矩阵的左上角和右上角坐标,这两个坐标所代表的矩阵内0变成1,1变成0. 2.查询某个坐标的点的值. ...

  5. POJ2155【二维树状数组,区间修改,点查询?】【又被输入输出坑】

    这题反反复复,到现在才过. 这道题就是树状数组的逆用,用于修改区间内容,查询点的值. 如果单纯就这个奇偶数来判的话,似乎这个思路比较好理解. 看了一下国家集训队论文(囧),<关于0与1在信息学奥 ...

  6. gym102220H 差分+树状数组(区间修改和输出)

    这题目很有意思,让我学会了树状数组的差分,更加深刻理解了树状数组 树状数组的差分写法 void add(int x,int k) { for (int i = x;i <= n;i += low ...

  7. A Simple Problem with Integers poj 3468 多树状数组解决区间修改问题。

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 69589   ...

  8. 【树状数组区间修改单点查询+分组】HDU 4267 A Simple Problem with Integers

    http://acm.hdu.edu.cn/showproblem.php?pid=4267 [思路] 树状数组的区间修改:在区间[a, b]内更新+x就在a的位置+x. 然后在b+1的位置-x 树状 ...

  9. 树状数组求区间和模板 区间可修改 参考题目:牛客小白月赛 I 区间

    从前有个东西叫树状数组,它可以轻易实现一些简单的序列操作,比如单点修改,区间求和;区间修改,单点求值等. 但是我们经常需要更高级的操作,比如区间修改区间查询.这时候树状数组就不起作用了,只能选择写一个 ...

  10. poj3468树状数组的区间更新,区间求和

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 47174   ...

随机推荐

  1. Android中传递对象的三种方法

    Android知识.前端.后端以至于产品和设计都有涉猎,想成为全栈工程师的朋友不要错过! Android中,Activity和Fragment之间传递对象,可以通过将对象序列化并存入Bundle或者I ...

  2. Navicat for MySQL出现#1045 错误怎么办

    #1045 - Access denied for user 'root'@'localhost' (using password: NO)这是因为你连接的时候没有密码或者密码没改对导致的.如下图所示 ...

  3. 【甘道夫】并行化频繁模式挖掘算法FP Growth及其在Mahout下的命令使用

    今天调研了并行化频繁模式挖掘算法PFP Growth及其在Mahout下的命令使用,简单记录下试验结果,供以后查阅: 环境:Jdk1.7 + Hadoop2.2.0单机伪集群 +  Mahout0.6 ...

  4. 实习生面试相关-b

    面试要准备什么 有一位小伙伴面试阿里被拒后,面试官给出了这样的评价:“……计算机基础,以及编程基础能力上都有所欠缺……”.但这种笼统的回答并非是我们希望的答案,所谓的基础到底指的是什么? 作为一名 i ...

  5. C#调用国家气象局天气预报接口

    原文:C#调用国家气象局天气预报接口 一.需求 最近,刚好项目中有天气预报查询功能的需求,要求录入城市名称,获取该城市今日天气信息及相关气象生活辅助信息等. 例如:查询北京市天气 结果为: 今日北京天 ...

  6. 程序C++ to C#交互

    第一次用C#调用C/C++生成的DLL文件,感觉有点新鲜,事实上仅仅是实现了执行在公共语言执行库 (CLR) 的控制之外的"非托管代码"(执行在公共语言执行库(CLR)的控制之中的 ...

  7. 修改linux环境变量配置文件

    发现error ImportError: dynamic module does not define module export function (PyInit_cv_bridge_boost) ...

  8. PartialView中的页面重定向

    在MVC的每个action中,都可以指定一种返回页面的类型,可以是ActionResult,这表示返回的页面为view或者是一个PartialView,前台是一个全整页面,后台是页面的一部分. 在以A ...

  9. P1439 排列LCS问题

    P1439 排列LCS问题 56通过 220提交 题目提供者yeszy 标签二分动态规划 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 暂时没有讨论 题目描述 给出1-n的两个排列P1和P2 ...

  10. 电商系统的演变可以看出架构演变 Dubbo入门 远程过程调用 需要解决的问题

    Dubbo入门---搭建一个最简单的Demo框架 - CSDN博客 https://blog.csdn.net/noaman_wgs/article/details/70214612 Dubbo背景和 ...