【转】Java 集合系列04之 fail-fast总结(通过ArrayList来说明fail-fast的原理、解决办法)
概要
前面,我们已经学习了ArrayList。接下来,我们以ArrayList为例,对Iterator的fail-fast机制进行了解。内容包括::
1 fail-fast简介
2 fail-fast示例
3 fail-fast解决办法
4 fail-fast原理
5 解决fail-fast的原理
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3308762.html
1 fail-fast简介
fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生fail-fast事件。
例如:当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
在详细介绍fail-fast机制的原理之前,先通过一个示例来认识fail-fast。
2 fail-fast示例
示例代码:(FastFailTest.java)
import java.util.*;
import java.util.concurrent.*; /*
* @desc java集合中Fast-Fail的测试程序。
*
* fast-fail事件产生的条件:当多个线程对Collection进行操作时,若其中某一个线程通过iterator去遍历集合时,该集合的内容被其他线程所改变;则会抛出ConcurrentModificationException异常。
* fast-fail解决办法:通过util.concurrent集合包下的相应类去处理,则不会产生fast-fail事件。
*
* 本例中,分别测试ArrayList和CopyOnWriteArrayList这两种情况。ArrayList会产生fast-fail事件,而CopyOnWriteArrayList不会产生fast-fail事件。
* (01) 使用ArrayList时,会产生fast-fail事件,抛出ConcurrentModificationException异常;定义如下:
* private static List<String> list = new ArrayList<String>();
* (02) 使用时CopyOnWriteArrayList,不会产生fast-fail事件;定义如下:
* private static List<String> list = new CopyOnWriteArrayList<String>();
*
* @author skywang
*/
public class FastFailTest { private static List<String> list = new ArrayList<String>();
//private static List<String> list = new CopyOnWriteArrayList<String>();
public static void main(String[] args) { // 同时启动两个线程对list进行操作!
new ThreadOne().start();
new ThreadTwo().start();
} private static void printAll() {
System.out.println(""); String value = null;
Iterator iter = list.iterator();
while(iter.hasNext()) {
value = (String)iter.next();
System.out.print(value+", ");
}
} /**
* 向list中依次添加0,1,2,3,4,5,每添加一个数之后,就通过printAll()遍历整个list
*/
private static class ThreadOne extends Thread {
public void run() {
int i = 0;
while (i<6) {
list.add(String.valueOf(i));
printAll();
i++;
}
}
} /**
* 向list中依次添加10,11,12,13,14,15,每添加一个数之后,就通过printAll()遍历整个list
*/
private static class ThreadTwo extends Thread {
public void run() {
int i = 10;
while (i<16) {
list.add(String.valueOf(i));
printAll();
i++;
}
}
} }
运行结果:
运行该代码,抛出异常java.util.ConcurrentModificationException!即,产生fail-fast事件!
结果说明:
(01) FastFailTest中通过 new ThreadOne().start() 和 new ThreadTwo().start() 同时启动两个线程去操作list。
ThreadOne线程:向list中依次添加0,1,2,3,4,5。每添加一个数之后,就通过printAll()遍历整个list。
ThreadTwo线程:向list中依次添加10,11,12,13,14,15。每添加一个数之后,就通过printAll()遍历整个list。
(02) 当某一个线程遍历list的过程中,list的内容被另外一个线程所改变了;就会抛出ConcurrentModificationException异常,产生fail-fast事件。
3 fail-fast解决办法
fail-fast机制,是一种错误检测机制。它只能被用来检测错误,因为JDK并不保证fail-fast机制一定会发生。若在多线程环境下使用fail-fast机制的集合,建议使用“java.util.concurrent包下的类”去取代“java.util包下的类”。
所以,本例中只需要将ArrayList替换成java.util.concurrent包下对应的类即可。
即,将代码
private static List<String> list = new ArrayList<String>();
替换为
private static List<String> list = new CopyOnWriteArrayList<String>();
则可以解决该办法。
4 fail-fast原理
产生fail-fast事件,是通过抛出ConcurrentModificationException异常来触发的。
那么,ArrayList是如何抛出ConcurrentModificationException异常的呢?
我们知道,ConcurrentModificationException是在操作Iterator时抛出的异常。我们先看看Iterator的源码。ArrayList的Iterator是在父类AbstractList.java中实现的。代码如下:
package java.util; public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> { ... // AbstractList中唯一的属性
// 用来记录List修改的次数:每修改一次(添加/删除等操作),将modCount+1
protected transient int modCount = 0; // 返回List对应迭代器。实际上,是返回Itr对象。
public Iterator<E> iterator() {
return new Itr();
} // Itr是Iterator(迭代器)的实现类
private class Itr implements Iterator<E> {
int cursor = 0; int lastRet = -1; // 修改数的记录值。
// 每次新建Itr()对象时,都会保存新建该对象时对应的modCount;
// 以后每次遍历List中的元素的时候,都会比较expectedModCount和modCount是否相等;
// 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
int expectedModCount = modCount; public boolean hasNext() {
return cursor != size();
} public E next() {
// 获取下一个元素之前,都会判断“新建Itr对象时保存的modCount”和“当前的modCount”是否相等;
// 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
checkForComodification();
try {
E next = get(cursor);
lastRet = cursor++;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
} public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
checkForComodification(); try {
AbstractList.this.remove(lastRet);
if (lastRet < cursor)
cursor--;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
} final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} ...
}
从中,我们可以发现在调用 next() 和 remove()时,都会执行 checkForComodification()。若 “modCount 不等于 expectedModCount”,则抛出ConcurrentModificationException异常,产生fail-fast事件。
要搞明白 fail-fast机制,我们就要需要理解什么时候“modCount 不等于 expectedModCount”!
从Itr类中,我们知道 expectedModCount 在创建Itr对象时,被赋值为 modCount。通过Itr,我们知道:expectedModCount不可能被修改为不等于 modCount。所以,需要考证的就是modCount何时会被修改。
接下来,我们查看ArrayList的源码,来看看modCount是如何被修改的。
package java.util; public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{ ... // list中容量变化时,对应的同步函数
public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
} // 添加元素到队列最后
public boolean add(E e) {
// 修改modCount
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
} // 添加元素到指定的位置
public void add(int index, E element) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size); // 修改modCount
ensureCapacity(size+1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
} // 添加集合
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
// 修改modCount
ensureCapacity(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
} // 删除指定位置的元素
public E remove(int index) {
RangeCheck(index); // 修改modCount
modCount++;
E oldValue = (E) elementData[index]; int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
elementData[--size] = null; // Let gc do its work return oldValue;
} // 快速删除指定位置的元素
private void fastRemove(int index) { // 修改modCount
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
} // 清空集合
public void clear() {
// 修改modCount
modCount++; // Let gc do its work
for (int i = 0; i < size; i++)
elementData[i] = null; size = 0;
} ...
}
从中,我们发现:无论是add()、remove(),还是clear(),只要涉及到修改集合中的元素个数时,都会改变modCount的值。
接下来,我们再系统的梳理一下fail-fast是怎么产生的。步骤如下:
(01) 新建了一个ArrayList,名称为arrayList。
(02) 向arrayList中添加内容。
(03) 新建一个“线程a”,并在“线程a”中通过Iterator反复的读取arrayList的值。
(04) 新建一个“线程b”,在“线程b”中删除arrayList中的一个“节点A”。
(05) 这时,就会产生有趣的事件了。
在某一时刻,“线程a”创建了arrayList的Iterator。此时“节点A”仍然存在于arrayList中,创建arrayList时,expectedModCount = modCount(假设它们此时的值为N)。
在“线程a”在遍历arrayList过程中的某一时刻,“线程b”执行了,并且“线程b”删除了arrayList中的“节点A”。“线程b”执行remove()进行删除操作时,在remove()中执行了“modCount++”,此时modCount变成了N+1!
“线程a”接着遍历,当它执行到next()函数时,调用checkForComodification()比较“expectedModCount”和“modCount”的大小;而“expectedModCount=N”,“modCount=N+1”,这样,便抛出ConcurrentModificationException异常,产生fail-fast事件。
至此,我们就完全了解了fail-fast是如何产生的!
即,当多个线程对同一个集合进行操作的时候,某线程访问集合的过程中,该集合的内容被其他线程所改变(即其它线程通过add、remove、clear等方法,改变了modCount的值);这时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
5 解决fail-fast的原理
上面,说明了“解决fail-fast机制的办法”,也知道了“fail-fast产生的根本原因”。接下来,我们再进一步谈谈java.util.concurrent包中是如何解决fail-fast事件的。
还是以和ArrayList对应的CopyOnWriteArrayList进行说明。我们先看看CopyOnWriteArrayList的源码:
package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import sun.misc.Unsafe; public class CopyOnWriteArrayList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable { ... // 返回集合对应的迭代器
public Iterator<E> iterator() {
return new COWIterator<E>(getArray(), 0);
} ... private static class COWIterator<E> implements ListIterator<E> {
private final Object[] snapshot; private int cursor; private COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
// 新建COWIterator时,将集合中的元素保存到一个新的拷贝数组中。
// 这样,当原始集合的数据改变,拷贝数据中的值也不会变化。
snapshot = elements;
} public boolean hasNext() {
return cursor < snapshot.length;
} public boolean hasPrevious() {
return cursor > 0;
} public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
} public E previous() {
if (! hasPrevious())
throw new NoSuchElementException();
return (E) snapshot[--cursor];
} public int nextIndex() {
return cursor;
} public int previousIndex() {
return cursor-1;
} public void remove() {
throw new UnsupportedOperationException();
} public void set(E e) {
throw new UnsupportedOperationException();
} public void add(E e) {
throw new UnsupportedOperationException();
}
} ... }
从中,我们可以看出:
(01) 和ArrayList继承于AbstractList不同,CopyOnWriteArrayList没有继承于AbstractList,它仅仅只是实现了List接口。
(02) ArrayList的iterator()函数返回的Iterator是在AbstractList中实现的;而CopyOnWriteArrayList是自己实现Iterator。
(03) ArrayList的Iterator实现类中调用next()时,会“调用checkForComodification()比较‘expectedModCount’和‘modCount’的大小”;但是,CopyOnWriteArrayList的Iterator实现类中,没有所谓的checkForComodification(),更不会抛出ConcurrentModificationException异常! (所以这里的COW(Copy-On-Write)的作用主要体现在写操作上,在写的时候会在一个副本上进行写,然后会被刷新到共享内存中。同时,为了保证最终的一致性,写操作是加锁的,这样不会有不一致的数据被刷新到共享内存中。所谓第二线程读到旧值,是指在某一线程在写,并且还未刷新到共享内存之前,CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性)
Copy-on-Write容器详见下一篇博文
【转】Java 集合系列04之 fail-fast总结(通过ArrayList来说明fail-fast的原理、解决办法)的更多相关文章
- Java 集合系列 04 LinkedList详细介绍(源码解析)和使用示例
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- Java 集合系列04之 fail-fast总结(通过ArrayList来说明fail-fast的原理、解决办法)
概要 前面,我们已经学习了ArrayList.接下来,我们以ArrayList为例,对Iterator的fail-fast机制进行了解.内容包括::1 fail-fast简介2 fail-fast示例 ...
- Java 集合系列目录(Category)
下面是最近总结的Java集合(JDK1.6.0_45)相关文章的目录. 01. Java 集合系列01之 总体框架 02. Java 集合系列02之 Collection架构 03. Java 集合系 ...
- Java 集合系列08之 List总结(LinkedList, ArrayList等使用场景和性能分析)
概要 前面,我们学完了List的全部内容(ArrayList, LinkedList, Vector, Stack). Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例 Ja ...
- Java 集合系列18之 Iterator和Enumeration比较
概要 这一章,我们对Iterator和Enumeration进行比较学习.内容包括:第1部分 Iterator和Enumeration区别第2部分 Iterator和Enumeration实例 转载请 ...
- Java 集合系列 09 HashMap详细介绍(源码解析)和使用示例
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- Java 集合系列 10 Hashtable详细介绍(源码解析)和使用示例
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- Java 集合系列 17 TreeSet
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- Java 集合系列 16 HashSet
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
随机推荐
- __repr__()
class A : def __init__(self,name): self.name=name #def __str__(self): # return '**%s**'%self.name de ...
- scrapy的User-Agent中间件、代理IP中间件、cookies设置、多个爬虫自定义settings设置
在scrapy的反爬中,常用的几个配置,简单总结了下: User-Agent中间件: from fake_useragent import UserAgent class RandomUserAgen ...
- HDU——1133 Buy the Ticket
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Portal嵌入SAPUI5应用程序
Embedding SAPUI5 Applications You can embed SAPUI5 applications directly into the SAP Fiori launchpa ...
- - > 贪心基础入门讲解三——活动安排问题二
有若干个活动,第i个开始时间和结束时间是[Si,fi),活动之间不能交叠,要把活动都安排完,至少需要几个教室? 分析:能否按照之一问题的解法,每个教室安排尽可能多的活动,即按结束时间排序,再贪心选 ...
- 为什么说Ubuntu的运行级别为2
继上一篇文章http://www.cnblogs.com/EasonJim/p/7163069.html深入研究了Linux的运行级别之后,发现网上大部分都说Ubuntu的运行级别默认为2,那么下面就 ...
- ArcGIS ArcMap “ Add Data” 打开后,一直卡死,无内容
打开ArcMap能打开,Add Data 或打开mxd就出Runtime Error对话框.打开ArcCatlog或者ArcGlobe出现Runtime Error对话框Runtime Error!P ...
- js 实现对ajax请求面向对象的封装
AJAX 是一种用于创建高速动态网页的技术.通过在后台与server进行少量数据交换.AJAX 能够使网页实现异步更新.这意味着能够在不又一次载入整个网页的情况下,对网页的某部分进行 ...
- WEB应用与站点的差别以及未来发展推測
WEB应用与站点的差别 确切的说应该是网络应用(Web Application)与网络网站(Website)的差别. 之所以要弄清这两个的差别,对于网页设计师以及參与到互联网行业的职业,其方发展向有非 ...
- SOJ.Output the Yanghui triangel
Output the Yanghui triangel 总提交数量: 225 通过数量: 59 时间限制:1秒 内存限制:256兆 题目描写叙述 Writ ...