微软2016校园招聘在线笔试 B Professor Q's Software [ 拓扑图dp ]
题目2 : Professor Q's Software
描述
Professor Q develops a new software. The software consists of N modules which are numbered from 1 to N. The i-th module will be started up by signal Si. If signal Si is generated multiple times, the i-th module will also be started multiple times. Two different modules may be started up by the same signal. During its lifecircle, the i-th module will generate Ki signals: E1, E2, ..., EKi. These signals may start up other modules and so on. Fortunately the software is so carefully designed that there is no loop in the starting chain of modules, which means eventually all the modules will be stoped. Professor Q generates some initial signals and want to know how many times each module is started.
输入
The first line contains an integer T, the number of test cases. T test cases follows.
For each test case, the first line contains contains two numbers N and M, indicating the number of modules and number of signals that Professor Q generates initially.
The second line contains M integers, indicating the signals that Professor Q generates initially.
Line 3~N + 2, each line describes an module, following the format S, K, E1, E2, ... , EK. S represents the signal that start up this module. K represents the total amount of signals that are generated during the lifecircle of this module. And E1 ... EK are these signals.
For 20% data, all N, M <= 10
For 40% data, all N, M <= 103
For 100% data, all 1 <= T <= 5, N, M <= 105, 0 <= K <= 3, 0 <= S, E <= 105.
Hint: HUGE input in this problem. Fast IO such as scanf and BufferedReader are recommended.
输出
For each test case, output a line with N numbers Ans1, Ans2, ... , AnsN. Ansi is the number of times that the i-th module is started. In case the answers may be too large, output the answers modulo 142857 (the remainder of division by 142857).
- 样例输入
-
3
3 2
123 256
123 2 456 256
456 3 666 111 256
256 1 90
3 1
100
100 2 200 200
200 1 300
200 0
5 1
1
1 2 2 3
2 2 3 4
3 2 4 5
4 2 5 6
5 2 6 7 - 样例输出
-
1 1 3
1 2 2
1 1 2 3 5
题意:
一个有向无环图,初始访问某些点,访问过的点会沿着能连的边一直走到底,问,最后每个点分别被访问了几次。
题解:
来自天猫的思路。
拓扑图dp。一个很好的思路~~~
从根节点开始,如果某个节点访问了,它的所有儿子节点访问数+1。
由于是按照拓扑顺序来处理的(并且没有环),所以,在继续对儿子的儿子处理时,不会再出现儿子节点再增加访问数。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <cstdlib>
#include <algorithm>
#include <map>
#include <set>
#include <utility>
#include <vector>
#include <queue> using namespace std; typedef pair<int,int> PII;
typedef pair<int,PII> PIII; #define LL long long
#define ULL unsigned long long
#define m_p make_pair
#define l_b lower_bound
#define p_b push_back
#define w1 first
#define w2 second
#define maxlongint 2147483647
#define biglongint 2139062143 const int maxn=;
const int A=; int TT,N,M,o,sc,tj;
vector<int> F[maxn];
int c[maxn],a[maxn],ans[maxn],vis[maxn],dp[maxn],inp[maxn]; void dfs(int s)
{
if (vis[s]==) return;
vis[s]=;
for (int i=;i<F[s].size();i++)
dfs(F[s][i]);
++o,ans[o]=s;
} int main()
{
scanf("%d",&TT);
for (int gb=;gb<=TT;gb++)
{
scanf("%d %d",&N,&M);
for (int i=;i<=M;i++) scanf("%d",&c[i]);
memset(inp,,sizeof(inp));
for (int i=;i<=A;i++) F[i].clear();
for (int i=;i<=N;i++)
{
scanf("%d",&a[i]);
scanf("%d",&sc);
for (int j=;j<=sc;j++)
{
scanf("%d",&tj);
if (tj>A) continue;
F[a[i]].p_b(tj);
++inp[tj];
}
}
o=;
memset(vis,,sizeof(vis));
for (int i=;i<=A;i++)
if (inp[i]==) dfs(i);
memset(dp,,sizeof(dp));
for (int i=;i<=M;i++) dp[c[i]]++;
for (int i=A+;i>=;i--)
{
sc=ans[i];
for (int j=;j<F[sc].size();j++)
dp[F[sc][j]]+=dp[sc],dp[F[sc][j]]%=;
}
for (int i=;i<N;i++) printf("%d ",dp[a[i]]);printf("%d\n",dp[a[N]]);
}
return ;
}
微软2016校园招聘在线笔试 B Professor Q's Software [ 拓扑图dp ]的更多相关文章
- 微软2016校园招聘在线笔试-Professor Q's Software
题目2 : Professor Q's Software 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Professor Q develops a new softw ...
- 微软2016校园招聘在线笔试第二场 题目1 : Lucky Substrings
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 A string s is LUCKY if and only if the number of different ch ...
- 微软2016校园招聘在线笔试 [Recruitment]
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 A company plans to recruit some new employees. There are N ca ...
- 题目3 : Spring Outing 微软2016校园招聘在线笔试第二场
题目3 : Spring Outing 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 You class are planning for a spring outin ...
- 微软2016校园招聘在线笔试之Magic Box
题目1 : Magic Box 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 The circus clown Sunny has a magic box. When ...
- hihocoder 1288 : Font Size (微软2016校园招聘4月在线笔试)
hihocoder 1288 笔试第一道..wa了好几次,也是无语..hihocoder错了不会告诉你失败的时候的测试集,这样有时候就很烦.. 遍历所有的字体,从min(w,h)开始逐渐变小开始遍历. ...
- 微软2016校园招聘4月在线笔试 A FontSize
题目链接:http://hihocoder.com/problemset/problem/1288 分析:题目中所求的是最大的FontSize(记为S),其应该满足P*[W/S]*[H/S] > ...
- 微软2016校园招聘4月在线笔试 ABC
题目链接:http://hihocoder.com/contest/mstest2016april1/problems 第一题:输入N,P,W,H,代表有N段文字,每段有ai个字,每行有⌊W/S⌋个字 ...
- 微软2016校园招聘4月在线笔试 hihocoder 1289 403 Forbidden
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 Little Hi runs a web server. Sometimes he has to deny acces ...
随机推荐
- 程序员必须知道FTP命令
程序员必须知道FTP命令 文件传输软件的使用格式为:FTP<FTP地址>,若连 接成功,系统将提示用户输入 ...
- 【HEVC帧间预测论文】P1.4 Motion Vectors Merging: Low Complexity Prediction Unit Decision
Motion Vectors Merging: Low Complexity Prediction Unit Decision Heuristic for the inter-Prediction o ...
- 51nod 1067 Bash游戏 V2
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次只能拿1,3,4颗,拿到最后1颗石子的人获胜.假设A B都非常聪 ...
- Win2D 入门教程 VB 中文版
继续填坑!又一个c#教程变为vb! 这是我翻译的Win2D教程,链接保留了微软原版的. 如果文档有问题,可以在 https://github.com/Nukepayload2/Win2dDocVB发 ...
- laravel homestead comoser install 报错
项目部署的时候composer install报错 说那个依赖包没有安装成功需要回滚删除但是删除不了 解决: 要配置共享文件 注:使用 NFS 的话,需要安装 vagrant-winnfsd 插件.该 ...
- 前端什么是BFC
什么是BFC? 全称块级格式化上下文?什么意思不懂.看了好多博客,基本都是抄的,真心都不是大白话.我今天来总结一下,用菜鸟级别的语言来描述. BFC 应该可以抽象成一个 独立的个体,出淤泥而不染的白莲 ...
- Linux Shell参数扩展(Parameter Expansion)
Shell Command Language在线文档: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html ...
- Proguard配置文件内容
-injars elec-bendao-1.2.jar-outjars elec-bendao-1.2-end.jar -libraryjars lib\charsets.jar-libraryjar ...
- 「 Luogu P2574 」 XOR的艺术——线段树
# 解题思路 这题不难,但是原谅我一开始的傻逼想法,一会儿再给大家透露透露. 先说怎么做这题. 显然对于 $0$ 和 $1$ 来说,异或无非也就只有两种变化 异或了奇数次,$0$ 就会变成 $1$,$ ...
- Java多线程的同步方式和锁机制
Object.wait(miliSec)/notify()/notifyAll() 线程调用wait()之后可以由notify()唤醒,如果指定了miliSec的话也可超时后自动唤醒.wait方法的调 ...