B1277 [HNOI2002]Tinux系统 树形dp
这个题bzoj上没有图,luogu上样例有问题。。。其实这个题代码不难,但是思考起来还是有一定难度的,其实这些题的重点都在于思考。我就不写了,洛谷上唯一的题解写的挺好,大家可以看一看。
题干:
在dos系统诞生以前,美国曾研究出一种类似的操作系统,名为Tinux系统。但由于硬件设施的制约,Tinux系统有许多的缺点。下面就对Tinux系统作一个简单的介绍:
Tinux系统是Tiger博士为美国军方研制开发的一种操作系统,该系统对文件的存储方式类似于dos系统,像一棵树一样,每一个叶子节点表示一个文件,每一个非叶子节点表示一个目录。其中定义i级子目录表示从根目录开始访问,一直访问到该子目录(不包括该子目录)需要访问的目录的个数为i的目录,所以根目录下的目录为一级子目录,其他的目录以此类推。但是在同一子目录下,受到硬件的制约Tinux系统最多只能够存储k个文件或子目录,也就是说这棵树里面的每一个非叶子节点最多只有k个子节点。这样就导致在文件数量较多的情况下,访问存储在该系统当中的文件A,往往要先访问一系列的子目录,我们称这些子目录为文件A的上级目录。例如下面这一个例子:
Root A1
A2
A3
A4
A4A1
A4A2
A4A2A1
A4A2A2
A4A3
当我们要访问文件A4A2A1时就必须先访问它的上级目录:一级子目录A4和二级子目录A4A2。
Tinux系统在存储文件时,给每一个子目录都分配了k个指针,分别指向存放在该目录下的每一个文件和每一个目录,因此对文件的访问实质上就是对指针的访问。但是由于硬件原因,这k个指针不尽相同,因此访问它们的时间也不同,访问第i个指针所耗费的时间为 。但是对于两个不同的子目录(不管它们各自属于哪一级目录)而言它们各自所拥有的k个指针是相同的。
Tinux系统最大的缺点是访问一个目录时,必须把该目录下所有的文件读入到内存当中来,这些文件包括在其各级子目录当中的文件,例如上面那一个例子,访问A4那一个目录,就必须把A4A1,A4A2A1,A4A2A2,A4A3这四个文件都读入到内存当中来,访问一个目录所需要的时间为 (x表示该目录及其各级子目录下文件的个数, 表示指向该目录的指针的访问时间)。因此根据上面介绍的访问方法,单独访问一个文件所需要的总时间为访问其所有上级目录(不包括根目录)所需要的时间与访问指向该文件的指针所需要的时间的和,例如上面那一个例子,访问文件A4A2A1需要的时间=访问目录A4的时间+访问目录A4A2的时间+访问指向文件A4A2A1的指针需要的时间。
现在,tiger博士准备将n个文件存储到一个空的Tinux系统当中,希望你帮助他设计一个程序找到一种最优的存储方法,使得单独访问这n个文件所需要的时间总和最小。
输入输出格式
输入格式:
输入由文件”system.in”读入。
文件的第一行为两个正整数 , ,接下来的k行每行有一个正整数 。
输出格式:
输出到文件”system.out”,输出文件仅有一个正整数,表示在最优存储方案下,单独访问这n个文件所需要的时间总和。(结果小于2的31次方 )
输入输出样例
说明
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
int f[][];
int n,k,p[];
int MIN(int x,int y)
{
if(!x)
return y;
else
return min(x,y);
}
int dp(int x,int y,int l)
{
if(x == )
{
f[x][y] = p[y];
return f[x][y];
}
if(y == k)
{
f[x][y] = p[y] * x * x + dp(x,,x - );
return f[x][y];
}
int tmp = k - y + ;
if(tmp * l < x)
return INF;
if(f[x][y]) return f[x][y];
tmp = (x - ) / tmp + ;
duke(i,tmp,l)
{
if(i == )
f[x][y] = p[y] + dp(x - ,y + ,x - );
else
f[x][y] = MIN(f[x][y],dp(x - i,y + ,x - i - ) + dp(i,,i - ) + p[y] * i * i);
}
return f[x][y];
}
int main()
{
read(n);read(k);
duke(i,,k)
read(p[i]);
sort(p + ,p + k + );
printf("%d\n",dp(n,,n - ));
return ;
}
B1277 [HNOI2002]Tinux系统 树形dp的更多相关文章
- 算法进阶面试题05——树形dp解决步骤、返回最大搜索二叉子树的大小、二叉树最远两节点的距离、晚会最大活跃度、手撕缓存结构LRU
接着第四课的内容,加入部分第五课的内容,主要介绍树形dp和LRU 第一题: 给定一棵二叉树的头节点head,请返回最大搜索二叉子树的大小 二叉树的套路 统一处理逻辑:假设以每个节点为头的这棵树,他的最 ...
- 水库(树形dp)
水库 (树形dp) R国有n座城市和n-1条长度为1的双向道路,每条双向道路连接两座城市,城市之间均相互连通.现在你需要维护R国的供水系统.你可以在一些城市修建水库,在第i个城市修建水库需要每年c_i ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- POJ2342 树形dp
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...
随机推荐
- RabbitMQ系列(六)--面试官问为什么要使用MQ,应该怎么回答
如果简历中有写到使用过RabbitMQ或者其他的消息中间件,可能在MQ方面的第一个问题就是问:为什么要使用MQ 面试官期望的回答 1.项目中有什么业务场景需要用到MQ 2.但是用了MQ,会带来很多问题 ...
- 字符、散列、模拟--P1055 ISBN号码
题目描述 每一本正式出版的图书都有一个ISBN号码与之对应,ISBN码包括9位数字.1位识别码和3位分隔符,其规定格式如x-xxx-xxxxx-x,其中符号-就是分隔符(键盘上的减号),最后一位是识别 ...
- enote笔记语言(2)(ver0.5)
why not(whyn't) 为什么不(与“why”相反对应,是它的反面.它的矛盾对立面) how对策 how设计 key-memo: ...
- java开发掌握的Linux命令
linux命令是对Linux系统进行管理的命令.对于Linux系统来说,无论是中央处理器.内存.磁盘驱动器.键盘.鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命 ...
- LINUX-SWAP文件系统
mkswap /dev/hda3 创建一个swap文件系统 swapon /dev/hda3 启用一个新的swap文件系统 swapon /dev/hda2 /dev/hdb3 启用两个swap分区
- mesh topology for airfoil, wing, blade, turbo
ref Ch. 5, Anderson, CFD the basics with applications numerical grid generation foundations and appl ...
- SRAM的简单概念
CY7C138 版权声明:本文为博主原创文章,未经博主允许不得转载.
- Java面试题大全(javaSe,HTML,CSS,js,Spring框架等)
目录 1. Java基础部分 7 1.一个".java"源文件中是否可以包括多个类(不是内部类)?有什么限制? 7 2.Java有没有goto? 7 3.说说&和& ...
- kafka streams
https://docs.confluent.io/current/streams/concepts.html#ktable
- Ubuntu 16.04安装Gufw防火墙(转)
继上一篇文章http://www.cnblogs.com/EasonJim/p/6851241.html讲解的UFW防火墙是没有界面的,下面将介绍在Gufw的GUI配置功能. Ubuntu简化了ipt ...