洛谷 P1566 加等式
题目描述
对于一个整数集合,我们定义“加等式”如下:集合中的某一个元素可以表示成集合内其他元素之和。如集合{1,2,3}中就有一个加等式:3=1+2,而且3=1+2 和3=2+1是相同的加等式,也是这个集合唯一的加等式。给定一个整数集合,编程找出其所有的加等式的个数
输入输出格式
输入格式:
第一行为t,表示测试数据组数。(1≤t≤10);
接下来t 行,每行表示一组测试数据。其中第一个数m(1≤m≤30),表示集合元素的个数,接下来m 个不同的整数x 分别表示集合元素(1≤x≤1000)。
输出格式:
对于每个输入数据,输出一个整数,表示其中加等式的个数。
输入输出样例
3
3 1 2 3
3 1 2 5
6 1 2 3 5 4 6
1
0
7
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int T,m,ans,Max;
int num[],f[];
int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&m);
for(int i=;i<=m;i++){
scanf("%d",&num[i]);
Max=max(Max,num[i]);
}
f[]=;
for(int i=;i<=m;i++)
for(int j=Max;j>=num[i];j--)
f[j]+=f[j-num[i]];
for(int i=;i<=m;i++)
ans+=f[num[i]];
cout<<ans-m<<endl;
memset(f,,sizeof(f));ans=;
}
}
100
洛谷 P1566 加等式的更多相关文章
- P1566 加等式
P1566 加等式 题目描述 对于一个整数集合,我们定义“加等式”如下:集合中的某一个元素可以表示成集合内其他元素之和.如集合{1,2,3}中就有一个加等式:3=1+2,而且3=1+2 和3=2+1是 ...
- luogu P1566 加等式
题目描述 对于一个整数集合,我们定义"加等式"如下:集合中的某一个元素可以表示成集合内其他元素之和.如集合{1,2,3}中就有一个加等式:3=1+2,而且3=1+2 和3=2+1是 ...
- 洛谷-火柴棒等式-NOIP2008提高组复赛
题目描述 Description 给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A.B.C是用火柴棍拼出的整数(若该数非零,则最高位不能是0).用火柴棍拼数字0-9的拼法如图所示: ...
- 题解 洛谷P2833 【等式】
运用暴力解方程吸氧过了这道题 通过数据范围看,要是枚举x和y只能炸掉三成的数据. 所以考虑枚举从x1到x2枚举x,通过方程移项可知y=-(ax+c)/b,再判断y是否在y1和y2之间即可. 本题本做法 ...
- 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式
接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...
- Luogu P1566 【加等式】
看到这道题,我们首先注意到“找出其所有的加等式的个数”,自然地考虑运用计数DP求出若干数相加的和的个数 考虑将每个元素排序后DP处理若干数相加的和的个数 用f[i]表示 对于一个数a[i],对于前i- ...
- 【bzoj2118&洛谷P2371】墨墨的等式(最短路神仙题)
题目传送门:bzoj2118 洛谷P2371 这道题看了题解后才会的..果然是国家集训队的神仙题,思维独特. 首先若方程$ \sum_{i=1}^{n}a_ix_i=k $有非负整数解,那么显然对于每 ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
随机推荐
- IIS 安装了.net framework 4.0/4.5 却找不到相应应用程序池
通常情况下是因为没注册造成的,有些安装包会自己帮你注册上有些不会,感觉略坑. 注册方法:在计算机中点击 开始菜单–>运行 拷贝以下内容运行一下即可. C:\WINDOWS\Microsoft.N ...
- (1)《Head First HTML与CSS》学习笔记---HTML基本概念
前言: 1. 这本书并没有面面俱到,涵盖所有内容,只提供作为初学者真正需要的东西:基本知识和信心.所以这不是唯一的参考书.(我买了一本<HTML5权威指南>作为参考书和这本一起看, ...
- [转]Sublime Text操作
原文地址:http://www.madongdong.me/sublime-text3%E4%BD%BF%E7%94%A8%E6%8C%87%E5%8D%97/ 作者:马东东 前言(Prologue) ...
- nginx负载均衡浅析
熟悉Nginx的小伙伴都知道,Nginx是一个非常好的负载均衡器.除了用的非常普遍的Http负载均衡,Nginx还可以实现Email,FastCGI的负载均衡,甚至可以支持基于Tcp/UDP协议的各种 ...
- php5.6.30开启redis扩展
注:5.6版本的php一定要下载phpredis3.0以上的版本,之前自己下载用的2.2.4的redis,安装配置完成后,PHP死活不支持redis的扩展,通过phpinfo打印也压根看不到,重复服务 ...
- spring.net应用
经过一段时间的调试,终于把spring.net中关于aop的方面给做个了一个比较完整的Demo.包含异常日志和性能日志.spring.net和log4net配置. http://files.cnblo ...
- 遮罩 HUD 指示器 蒙板 弹窗
遮罩 HUD 指示器 蒙板 弹窗 UIAlertView的使用<代理方法处理按钮点击> UIAlertView *alertView = [[UIAlertView alloc] init ...
- Nexus环境搭建
安装 1.解压nexus-2.11.01-bundle.zip到F:\Java\nexus(可自定义) 2.进入F:\Java\nexus\nexus-2.11.1-01\bin\jsw进入相应的系统 ...
- leetcode_951. Flip Equivalent Binary Trees_二叉树遍历
https://leetcode.com/problems/flip-equivalent-binary-trees/ 判断两棵二叉树是否等价:若两棵二叉树可以通过任意次的交换任意节点的左右子树变为相 ...
- Android(java)学习笔记199:JNI之JNI概念
1. JNI是什么? java native interface (java本机接口) 比如方法声明: public final native Class<?> getClass(): ...