kafka直连方式消费多个topic
一个消费者组可以消费多个topic,以前写过一篇一个消费者消费一个topic的,这次的是一个消费者组通过直连方式消费多个topic,做了小测试,结果是正确的,通过查看zookeeper的客户端,zookeeper记录了偏移量
package day04
/*
消费多个topic
*/
import kafka.common.TopicAndPartition
import kafka.message.MessageAndMetadata
import kafka.serializer.StringDecoder
import kafka.utils.{ZKGroupTopicDirs, ZkUtils}
import scala.collection.mutable.ListBuffer
import org.I0Itec.zkclient.ZkClient
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaUtils, OffsetRange}
import org.apache.spark.streaming.{Duration, StreamingContext}
object OrderDemoYY1 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("yy").setMaster("local[*]")
val ssc = new StreamingContext(conf,Duration(5000))
//消费3个topic
val topic1 = "wc"
val topic2 ="wc1"
val topic3 ="wc2"
//组名
val groupid ="GPMMVV"
//zookeeper地址
val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
//brokerList
val brokerList = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
//把消费的分区放到Set集合中,可以在第一次读取时作为参数传入
val topics = Set(topic1,topic2,topic3)
//ListBuffer时有序的,按下标有序
val topicsList = ListBuffer[String](topic1,topic2,topic3)
//设置kafka的参数
val kafkaParams = Map(
"metadata.broker.list"->brokerList,
"groupid"->groupid,
"auto.offset.reset"->kafka.api.OffsetRequest.SmallestTimeString
//默认时从头开始读的
)
//new ListBuffer用来存放ZKGroupTopicDirs, 用来保存偏移量的地址
//因为有多个topic,对应的也就有多个ZKGroupTopicDirs
var zkGTList:ListBuffer[ZKGroupTopicDirs] =new ListBuffer[ZKGroupTopicDirs]()
//根据topicList 新建 ZKGroupTopicDirs 添加到zkGTList
for(tp <- topicsList){
val topicDirs = new ZKGroupTopicDirs(groupid,tp)
zkGTList += topicDirs
}
//新建zkClient,用来获取偏移量和更新偏移量
val zkClient = new ZkClient(zkQuorum)
//新建一个InputDStream,要是var,因为有两种情况,消费过? 没有消费过? 根据情况赋值
var kafkaDStream :InputDStream[(String,String)] = null
//创建一个Map,(key,value)-》( 对应的时Topic和分区 ,偏移量)
var fromOffset = Map[TopicAndPartition,Long]()
//获取每个topic是否被消费过
var childrens:ListBuffer[Int] =new ListBuffer[Int]()
var flag = false //有topic被消费过则为true
for (topicDir <- zkGTList){ //循环存放偏移量的
//通过zkClient.countChidren来获取每个topic对应的分区中的偏移量ZKGroupTopicDirs的对象
val child: Int = zkClient.countChildren(topicDir.consumerOffsetDir)
childrens +www.mhylpt.com= child
if(child>0){
flag = true
}
}
if(flag){//消费过
for(z <- 0 until topics.size){ //根据topicsList的的下表获取相应的child和ZKGroupTopicDirs
val child = childrens(z)
val gpDirs = zkGTList(z)
val topicn = topicsList(z)
for(i <- 0 until child)www.mcyllpt.com/{
//循环child, 根据使用zkClient.readData方法,u获取topic的每个分区的偏移量
val offset = zkClient.readData[String](gpDirs.consumerOffsetDir+"/"+i)
val tp = new TopicAndPartition(www.michenggw.com/ topicn,i)
fromOffset += tp -> offset.toLong
}
}
//返回的而结果是 kafka的key,默认是null, value是kafka中的值
val messageHandler =www.gcyl159.com/ (mmd:MessageAndMetadata[String,String])=www.gcyl152.com>{
(mmd.key(),mmd.message())
}
//创建kafkaDStream
kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder,(String,String)](
ssc,kafkaParams,fromOffset,messageHandler
)
}else{//以前没有读取过
kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](
ssc,kafkaParams,topics
)
}
/*val children1 = zkClient.countChildren(zKGroupTopicDirs1.consumerOffsetDir)
val children2 = zkClient.countChildren(zKGroupTopicDirs2.consumerOffsetDir)
if(children1>0 || children2>0){
if(children1>0){
for (i <- 0 until children1){
val offset = zkClient.readData[String](zKGroupTopicDirs1.consumerOffsetDir+"/"+i)
val tp = new TopicAndPartition(topic1,i)
fromOffset += tp ->offset.toLong
}
}
if(children2>0){
for (i <- 0 until children1){
val offset = zkClient.readData[String](zKGroupTopicDirs2.consumerOffsetDir+"/"+i)
val tp = new TopicAndPartition(topic2,i)
fromOffset += tp ->offset.toLong
}
}
val messageHandler =(mmd:MessageAndMetadata[String,String])=>{
(mmd.key(),mmd.message())
}
kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder,(String,String)](ssc,
kafkaParams,fromOffset,messageHandler)
}else{
kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topics)
}*/
var offsetRanges = Array[OffsetRange]www.hjpt521.com() //用来记录更新的每个topic的分区偏移量
kafkaDStream.foreachRDD(kafkaRDD=>{
//kafkaRDD是一个KafkaRDD,可以转换成HasOffsetRanges对象,从而获取offsetRanges
offsetRanges= kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges
kafkaRDD.foreach(println)www.365soke.com //打印
for(o <- offsetRanges){
val topicNN: String = o.topic //获取topic
val offset: Long = o.untilOffset //获取偏移量
val partition: Int = o.partition //获取分区
val i = topicsList.indexOf(topicNN) //通过topicList查找topic的下标,找到与之对应的ZKGroupTopicDirs
val gpDir = zkGTList(i)
//通过ZkUtils更新偏移量
ZkUtils.updatePersistentPath(zkClient,gpDir.consumerOffsetDir+"/"+partition,offset.toString)
/*if(topicNN.equals(topic1)){
ZkUtils.updatePersistentPath(zkClient,zKGroupTopicDirs1.consumerOffsetDir+"/"+partition,offset.toString)
}else if(topicNN.equals(topic2)){
ZkUtils.updatePersistentPath(zkClient,zKGroupTopicDirs2.consumerOffsetDir+"/"+partition,offset.toString)
}*/
}
})
ssc.start()
ssc.awaitTermination(www.dfgjyl.cn)
可以通过zookeeper的客户端,在/consumers中查看偏移量,
我的3个topic中,其中wc和wc1只有1个分区,可以通过下图可看出wc1的0分区偏移量13
kafka直连方式消费多个topic的更多相关文章
- SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量
SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量 1. ScalikeJDBC 2.配置文件 3.导入依赖的jar包 4.源码测试 通过MySQL保存kafka的偏移量 ...
- kafka全部数据清空与某一topic数据清空
1. Kafka全部数据清空 kafka全部数据清空的步骤为: 停止每台机器上的kafka: 删除kafka存储目录(server.properties文件log.dirs配置,默认为“/tmp/ka ...
- spring整合kafka(配置文件方式 消费者)
Kafka官方文档有 https://docs.spring.io/spring-kafka/reference/htmlsingle/ 这里是配置文件实现的方式 先引入依赖 <depend ...
- Spark+Kafka的Direct方式将偏移量发送到Zookeeper实现(转)
原文链接:Spark+Kafka的Direct方式将偏移量发送到Zookeeper实现 Apache Spark 1.3.0引入了Direct API,利用Kafka的低层次API从Kafka集群中读 ...
- spring整合kafka项目生产和消费测试结果记录(一)
使用spring+springMVC+mybatis+kafka做了两个web项目,一个是生产者,一个是消费者. 通过JMeter测试工具模拟100个用户并发访问生产者项目,发送json数据给生产者的 ...
- Kafka学习笔记之Kafka自身操作日志的清理方法(非Topic数据)
0x00 概述 本文主要讲Kafka自身操作日志的清理方法(非Topic数据),Topic数据自己有对应的删除策略,请看这里. Kafka长时间运行过程中,在kafka/logs目录下产生了大量的ka ...
- Kafka 是如何管理消费位点的?
Kafka 是一个高度可扩展的分布式消息系统,在实时事件流和流式处理为中心的架构越来越风靡的今天,它扮演了这个架构中核心存储的角色.从某种角度说,Kafka 可以看成实时版的 Hadoop 系统.Ha ...
- Dubbo直连方式
目录 一.dubbo概述 1. 基本架构 2. dubbo 支持的协议 二.直连方法 三.创建服务提供者 1. 思路 1. 创建maven web 2. pom.xml 3. 创建实体 4. 创建服务 ...
- 【Java面试】Kafka 怎么避免重复消费
Hi,大家好,我是Mic 一个工作5年的粉丝找到我. 他说: "Mic老师,你要是能回答出这个问题,我就佩服你" 我当场就懵了,现在打赌都这么随意了吗? 我问他问题是什么,他说&q ...
随机推荐
- TPS763xxDBV线性稳压器
DC DC converter 是直流变换器,因为直流不能通过变压器改变电压,要将直流电压通过振荡变成交流电压,再通过变压器或斩波器将电压升高或降低,再经滤波变成所需的电压.而voltage regu ...
- HDU 4565 So Easy! 数学 + 矩阵 + 整体思路化简
http://acm.hdu.edu.cn/showproblem.php?pid=4565 首先知道里面那个东西,是肯定有小数的,就是说小数部分是约不走的,(因为b限定了不是一个完全平方数). 因为 ...
- 浅议block实现原理,block为什么使用copy关键字?
1.block是一个特殊的oc对象,建立在栈上,而不是堆上,这么做一个是为性能考虑,还有就是方便访问局部变量. 2.默认Block使用到的局部变量会被copy,而不是retain.所以,他无法改变局部 ...
- 【学习笔记】深入理解js原型和闭包(2)——函数和对象的关系
上文(深入理解jS原型和闭包(1)——一切都是对象)已经提到,函数就是对象的一种,因为通过instanceof函数可以判断. var fn = function () { }; console.log ...
- ZooKeeper读书笔记
<ZooKeeper读书笔记> 1.Zookeeper是什么?Zookeeper是一个典型的分布式数据一致性的解决方案,分布式应用可以基于它实现诸如数据发布/订阅.负载均衡.命名服务.分布 ...
- 几个windows使用小技巧
windows使用技巧 保存网页上图片时,可以按住左键把图片拖到右下角(win+D,双屏幕直接拖动)然后就可以放在桌面啦 放大镜-->Win+加号或者减号(放大或缩小).Win + Esc(退出 ...
- BZOJ 2157: 旅游 (2017.7.21 6:30-2017.7.21 15:38 今日第一题。。)
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1754 Solved: 765 Description Ray 乐忠于旅游,这次他来到了T 城.T ...
- 洛谷 P1011 车站
题目描述 火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人.从第3站起( ...
- nginx 1.15.10 前端代理转发 将多个地址,代理转发到一个地址和端口 多系统公用一个cookie 统一token
nginx 1.15.10 前端代理转发 将多个地址,代理转发到一个地址和端口 多系统公用一个cookie 统一token 注意: proxy_pass http://192.168.40.54:22 ...
- [SQL]连续三天有销售额
店铺 销售日期 销售额 A 2017-10-11 300 A 2017-10-12 200 B 2017-10-11 400 B 2017-10-12 200 A 2017-10-13 100 A 2 ...