利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。

训练分类器时的做法就是寻找最佳拟合参数,使用的时最优化算法。

优点:计算代价不高,利于理解和实现。

缺点:容易欠拟合,分类精度可能不高。

适用数据类型:数值型和标称型数据。

最优化算法:1基本的梯度上升法 2改进的梯度上升法

海维塞德阶跃函数=单位阶跃函数(该函数在跳跃点上从0瞬间跳跃到1),这个顺时跳跃过程很难处理。幸好,另一个函数也有类似的性质,而且数学上更容易处理,这就是Sigmoid函数。具体的计算公式如下:

σ(z) =1/(1+e-z)

当z为0时,Sigmoid函数值为0.5。随着x的增大,对应的Sigmoid函数值将逼近于1;而随着x的减小,Sigmoid值将逼近于0。如果横坐标刻度足够大,Sigmoid函数看起来很像一个阶跃函数。因此为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结值相加,将这个总和代入Sigmoid函数中,进而得到一个范围在0~1之间的数值。

确定了分类器的函数形式之后,现在的问题变成了:最佳回归系数是多少?如何确定他们的大小?

基于最优化方法的最佳回归系数确定

sigmoid函数的输入记为z,由下面公式得出:z=w0x0+w1x1+w2x2+...+wnxn,如果采用向量的写法,上述公式可以写成Z=wTx。其中向量x是分类器的输入数据,向量w也就是我们要找到的最佳参数。


下面将要介绍寻找最优参数的梯度上升法和随机梯度上升法

1梯度上升法-要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。

用向量来表示的话,梯度算法的迭代公式如下:

w:=w+αΔwf(w)                 Δwf(w):移动方向;α:步长。

该公式将一直被执行,直到达到某个条件为止,比如迭代次数达到某个指定值或者算法达到某个允许的误差范围。

梯度上升算法用来求函数的最大值,而梯度下降算法用来求函数的最小值。

#Logistic回归梯度上升优化算法(代码)如下:
#!/usr/bin/env python
from numpy import * def loadDataSet():
dataMat=[];labelMat=[]
fr = open('testSet.txt')
for line in fr.readlines():
lineArr=line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])]) #x0,x1,x2组成的三维数据集
labelMat.append(int(lineArr[2])) #类别标签
return dataMat,labelMat def sigmoid(inX):
return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn,classLabels):
dataMatrix=mat(dataMatIn)
labelMat=mat(classLabels).transpose() #转换为NumPy矩阵数据类型
m,n=shape(dataMatrix)
alpha=0.001
maxCycles=500 #循环500次
weights=ones((n,1))
for k in range(maxCycles):
h=sigmoid(dataMatrix*weights)
error=(labelMat-h)
weights=weights+alpha*dataMatrix.transpose()*error #更新参数
return weights dataArr,labelMat=loadDataSet()
print gradAscent(dataArr,labelMat)

  

#画出分隔线,从而使得优化的过程便于理解,在上述代码后添加如下代码:

def plotBestFit(wei):
import matplotlib.pyplot as plt
weights=wei.getA()
dataMat,labelMat=loadDataSet()
dataArr=array(dataMat)
n=shape(dataArr)[0]
xcord1=[];ycord1=[]
xcord2=[];ycord2=[]
for i in range(n):
if int(labelMat[i])==1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
fig = plt.figure()
ax=fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x=arange(-3.0,3.0,0.1)
y=(-weights[0]-weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('x1');plt.ylabel('x2')
plt.show() dataArr,labelMat=loadDataSet()
weights=gradAscent(dataArr,labelMat)
plotBestFit(weights.getA())

简单的测验数据(testSet.txt):

-1 -2 0
-2 -3 0
-3 -4 0
-4 -5 0
-5 -6 0
6 7 1
-3 -2 0
7 5 1
6 3 1
5 4 1
7 3 1

机器学习基础-Logistic回归1的更多相关文章

  1. 机器学习基础-Logistic回归2

    随机梯度上升法--一次仅用一个样本点来更新回归系数(因为可以在新样本到来时对分类器进行增量式更新,因而属于在线学习算法) 梯度上升法在每次更新回归系统时都需要遍历整个数据集,该方法在处理100个左右的 ...

  2. [机器学习实战-Logistic回归]使用Logistic回归预测各种实例

    目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...

  3. 机器学习之Logistic 回归算法

    1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ( ...

  4. 机器学习之logistic回归算法与代码实现原理

    Logistic回归算法原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10033567.html ...

  5. 机器学习5—logistic回归学习笔记

    机器学习实战之logistic回归 test5.py #-*- coding:utf-8 import sys sys.path.append("logRegres.py") fr ...

  6. 机器学习笔记—Logistic回归

    本文申明:本系列笔记全部为原创内容,如有转载请申明原地址出处.谢谢 序言:what is logistic regression? Logistics 一词表示adj.逻辑的;[军]后勤学的n.[逻] ...

  7. 机器学习笔记—Logistic 回归

    前面我们介绍了线性回归,为捕获训练集中隐藏的线性模型,提高预测准确率,我们寻找最佳参数 θ,使得预测值与真实值误差尽量小,也就是使均方误差最小.而经过验证,最小均方误差是符合最大似然估计理论的. 在 ...

  8. 吴裕雄--天生自然python机器学习:Logistic回归

    假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...

  9. 机器学习算法-logistic回归算法

    Logistic回归算法调试 一.算法原理 Logistic回归算法是一种优化算法,主要用用于只有两种标签的分类问题.其原理为对一些数据点用一条直线去拟合,对数据集进行划分.从广义上来讲这也是一种多元 ...

随机推荐

  1. (021)VMWare副虚拟磁盘和子虚拟磁盘id不匹配

    问题:因为某种原因,修改了VM虚拟机的父磁盘内容,导致开机时出现如下错误: 父虚拟磁盘在子虚拟磁盘创建之后被修改过.父虚拟磁盘的内容 ID 与子虚拟磁盘中对应的父内容 ID 不匹配打不开磁盘“***. ...

  2. D. Taxes 哥德巴赫猜想

    http://codeforces.com/contest/735/problem/D 这题其实我还不是很懂,那个只是猜想,然而却用了. 只想说说找到第一小于n的素数这种思路是不行的. 121 = 1 ...

  3. 文件共享服务 FTP,NFS 和 Samba

    DAS DAS 指 Direct Attached Storage,即直连附加存储,这种设备直接连接到计算机主板总线上,计算机将其识别为一个块设备,例如常见的硬盘,U 盘等,这种设备很难做到共享. N ...

  4. CentOS 安装图形化界面方法

    登录系统,使用yum 安装 #yum groupinstall 'X Window System'  -y 安装GNOME桌面环境 #yum groupinstall  'GNOME Desktop ...

  5. Array(数组)的基本方法

    1.定义:var   arr=new  Array ("12" , "zhang") 2.简写:var   arr=[ 12 , "zhang&quo ...

  6. QQ面板拖拽(慕课网DOM事件探秘)(下)

    2.鼠标事件坐标获取 function fnDown(event) { var event = event || window.event; var oDrag = document.getEleme ...

  7. 伟景行 citymaker 从入门到精通系列

    伟景行 citymaker 从入门到精通(1)——js开发,最基本demo,加载cep工程文件 伟景行 citymaker 从入门到精通(2)——工程图层树加载   伟景行 citymaker 从入门 ...

  8. 推荐一个高大上的网易云音乐命令行播放工具:musicbox

    网易云音乐上有很多适合程序猿的歌单,但是今天文章介绍的不是这些适合程序员工作时听的歌,而是一个用Python开发的开源播放器,专门适用于网易云音乐的播放.这个播放器的名称为MusicBox, 特色是用 ...

  9. js运行机制(线程)

    浏览器线程 js运作在浏览器中,是单线程的,即js代码始终在一个线程上执行,这个线程称为js引擎线程. 浏览器是多线程的,除了js引擎线程,它还有:  UI渲染线程 浏览器事件触发线程 http请求线 ...

  10. select2宽度占比100%,导致无法实现浮动效果