利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。

训练分类器时的做法就是寻找最佳拟合参数,使用的时最优化算法。

优点:计算代价不高,利于理解和实现。

缺点:容易欠拟合,分类精度可能不高。

适用数据类型:数值型和标称型数据。

最优化算法:1基本的梯度上升法 2改进的梯度上升法

海维塞德阶跃函数=单位阶跃函数(该函数在跳跃点上从0瞬间跳跃到1),这个顺时跳跃过程很难处理。幸好,另一个函数也有类似的性质,而且数学上更容易处理,这就是Sigmoid函数。具体的计算公式如下:

σ(z) =1/(1+e-z)

当z为0时,Sigmoid函数值为0.5。随着x的增大,对应的Sigmoid函数值将逼近于1;而随着x的减小,Sigmoid值将逼近于0。如果横坐标刻度足够大,Sigmoid函数看起来很像一个阶跃函数。因此为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结值相加,将这个总和代入Sigmoid函数中,进而得到一个范围在0~1之间的数值。

确定了分类器的函数形式之后,现在的问题变成了:最佳回归系数是多少?如何确定他们的大小?

基于最优化方法的最佳回归系数确定

sigmoid函数的输入记为z,由下面公式得出:z=w0x0+w1x1+w2x2+...+wnxn,如果采用向量的写法,上述公式可以写成Z=wTx。其中向量x是分类器的输入数据,向量w也就是我们要找到的最佳参数。


下面将要介绍寻找最优参数的梯度上升法和随机梯度上升法

1梯度上升法-要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。

用向量来表示的话,梯度算法的迭代公式如下:

w:=w+αΔwf(w)                 Δwf(w):移动方向;α:步长。

该公式将一直被执行,直到达到某个条件为止,比如迭代次数达到某个指定值或者算法达到某个允许的误差范围。

梯度上升算法用来求函数的最大值,而梯度下降算法用来求函数的最小值。

#Logistic回归梯度上升优化算法(代码)如下:
#!/usr/bin/env python
from numpy import * def loadDataSet():
dataMat=[];labelMat=[]
fr = open('testSet.txt')
for line in fr.readlines():
lineArr=line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])]) #x0,x1,x2组成的三维数据集
labelMat.append(int(lineArr[2])) #类别标签
return dataMat,labelMat def sigmoid(inX):
return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn,classLabels):
dataMatrix=mat(dataMatIn)
labelMat=mat(classLabels).transpose() #转换为NumPy矩阵数据类型
m,n=shape(dataMatrix)
alpha=0.001
maxCycles=500 #循环500次
weights=ones((n,1))
for k in range(maxCycles):
h=sigmoid(dataMatrix*weights)
error=(labelMat-h)
weights=weights+alpha*dataMatrix.transpose()*error #更新参数
return weights dataArr,labelMat=loadDataSet()
print gradAscent(dataArr,labelMat)

  

#画出分隔线,从而使得优化的过程便于理解,在上述代码后添加如下代码:

def plotBestFit(wei):
import matplotlib.pyplot as plt
weights=wei.getA()
dataMat,labelMat=loadDataSet()
dataArr=array(dataMat)
n=shape(dataArr)[0]
xcord1=[];ycord1=[]
xcord2=[];ycord2=[]
for i in range(n):
if int(labelMat[i])==1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
fig = plt.figure()
ax=fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x=arange(-3.0,3.0,0.1)
y=(-weights[0]-weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('x1');plt.ylabel('x2')
plt.show() dataArr,labelMat=loadDataSet()
weights=gradAscent(dataArr,labelMat)
plotBestFit(weights.getA())

简单的测验数据(testSet.txt):

-1 -2 0
-2 -3 0
-3 -4 0
-4 -5 0
-5 -6 0
6 7 1
-3 -2 0
7 5 1
6 3 1
5 4 1
7 3 1

机器学习基础-Logistic回归1的更多相关文章

  1. 机器学习基础-Logistic回归2

    随机梯度上升法--一次仅用一个样本点来更新回归系数(因为可以在新样本到来时对分类器进行增量式更新,因而属于在线学习算法) 梯度上升法在每次更新回归系统时都需要遍历整个数据集,该方法在处理100个左右的 ...

  2. [机器学习实战-Logistic回归]使用Logistic回归预测各种实例

    目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...

  3. 机器学习之Logistic 回归算法

    1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ( ...

  4. 机器学习之logistic回归算法与代码实现原理

    Logistic回归算法原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10033567.html ...

  5. 机器学习5—logistic回归学习笔记

    机器学习实战之logistic回归 test5.py #-*- coding:utf-8 import sys sys.path.append("logRegres.py") fr ...

  6. 机器学习笔记—Logistic回归

    本文申明:本系列笔记全部为原创内容,如有转载请申明原地址出处.谢谢 序言:what is logistic regression? Logistics 一词表示adj.逻辑的;[军]后勤学的n.[逻] ...

  7. 机器学习笔记—Logistic 回归

    前面我们介绍了线性回归,为捕获训练集中隐藏的线性模型,提高预测准确率,我们寻找最佳参数 θ,使得预测值与真实值误差尽量小,也就是使均方误差最小.而经过验证,最小均方误差是符合最大似然估计理论的. 在 ...

  8. 吴裕雄--天生自然python机器学习:Logistic回归

    假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...

  9. 机器学习算法-logistic回归算法

    Logistic回归算法调试 一.算法原理 Logistic回归算法是一种优化算法,主要用用于只有两种标签的分类问题.其原理为对一些数据点用一条直线去拟合,对数据集进行划分.从广义上来讲这也是一种多元 ...

随机推荐

  1. Solr打分排序规则自定义【转】

    在搭建好solrCloud搜索集群后,通过编写基本的查询显示语句已经能够通过输入关键字查询到相应结果进行显示,但是在显示结果排序上以及不相关信息过滤问题上,如何制定合理的打分规则得到理想的结果集确实比 ...

  2. joomla多语言建站之默认前台语言设置

    joomla多语言建站后,如果想设置其中一种语言为默认前台语言,即: 从后台点击“Site Name”跳转时: 访问域名时: 页面自动切换至某一种语言,可以在后台通过“语言管理”模块来实现,将“网站前 ...

  3. ES6学习笔记(9)----Symbol

    参考书<ECMAScript 6入门>http://es6.ruanyifeng.com/ Symbol1.symbol:Symbol是javascript的第七种原始数据类型,代表独一无 ...

  4. AI学习一:环境安装

    对于Python开发用户来讲,PIP安装软件包是家常便饭.但国外的源下载速度实在太慢,浪费时间.而且经常出现下载后安装出错问题.所以把PIP安装源替换成国内镜像,可以大幅提升下载速度,还可以提高安装成 ...

  5. TFS2010单独安装配置tfs build server

    记录一下确实很磨人. 同样硬件和软件环境的两台服务器,其中一台服务器很久之前就配置好了tfs2010 build ,然后最近想再配置一台tfs build server,但是按照以前的配置流程始终提示 ...

  6. Window.Event.KeyCode的含义

    Window.Event.KeyCode=13的含义(转载) 2011-04-16 09:41:18|  分类: html |  标签:keycode  event  realkey  var  do ...

  7. 关于JDBC访问存储过程的问题

    最近开发一个应用,需要调用一个入参为List的存储过程. 存储过程为: proc_test(p1 OUT Number, p2 IN Number, p3 IN TAB_CUSTOMER); 这个Li ...

  8. docker 新手入门 (阿里镜像仓库的使用)

    创建镜像仓库后的步骤是:   https://help.aliyun.com/document_detail/60743.html?spm=a2c4g.11186623.6.546.79be52f3y ...

  9. core 中使用 nlog

    引包 代码 public void Configure(IApplicationBuilder app, IHostingEnvironment env,ILoggerFactory logFac) ...

  10. Visual Studio中Radio Button组绑定变量方法(DDX_Radio方法)

    需求描述:Visual Studio 创建的界面程序中又许多 Radio Button,希望这些所有的Radio Button统一绑定到一个变量上,这个变量一旦改变,Radio Button的选中状态 ...