洛谷 P1351 联合权值 —— 树形DP
题目:https://www.luogu.org/problemnew/show/P1351
树形DP,别忘了子树之间的情况(拐一下距离为2)。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const maxn=2e5+,mod=;
int n,hd[maxn],ct,to[maxn<<],nxt[maxn<<];
ll w[maxn],ans,sum,mxx[maxn],s[maxn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return ret*f;
}
void add(int x,int y){to[++ct]=y; nxt[ct]=hd[x]; hd[x]=ct;}
void dfs(int x,int f)
{
ll ns=,nm=;//不是全局变量!
for(int i=hd[x],u;i;i=nxt[i])
{
if((u=to[i])==f)continue;
dfs(u,x); sum=(sum+s[u]*w[x])%mod;
ans=max(ans,mxx[u]*w[x]);
s[x]+=w[u]; mxx[x]=max(mxx[x],w[u]);
sum=(sum+ns*w[u])%mod; ns+=w[u];
ans=max(ans,nm*w[u]); nm=max(nm,w[u]);
}
}
int main()
{
n=rd();
for(int i=,x,y;i<n;i++)
{
x=rd(); y=rd();
add(x,y); add(y,x);
}
for(int i=;i<=n;i++)w[i]=rd();
dfs(,);
printf("%lld %lld\n",ans,(sum*)%mod);
return ;
}
洛谷 P1351 联合权值 —— 树形DP的更多相关文章
- 洛谷P1351 联合权值(树形dp)
题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...
- 洛谷 1351 联合权值——树形dp
题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...
- 洛谷 P1351 联合权值 题解
P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\),每条 ...
- [NOIP2014] 提高组 洛谷P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- 洛谷 P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- 洛谷——P1351 联合权值
https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...
- 『题解』洛谷P1351 联合权值
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...
- 洛谷P1351 联合权值
\(\Large\textbf{Description:}\) \(\large一棵树,父子之间距离为1,求距离为2的两点点权之积的最大值与和.\) \(\Large\textbf{Solution: ...
- P1351 联合权值(树形dp)
P1351 联合权值 想刷道水题还交了3次.....丢人 (1.没想到有两个点都是儿子的状况 2.到处乱%(大雾)) 先dfs一遍处理出父亲$fa[x]$ 蓝后再一遍dfs,搞搞就出来了. #incl ...
随机推荐
- 树莓派 -- oled 续(1) wiringPi
在上文中,分析了wiringPi 的oled demo是使用devfs来控制spi master和spi slave通讯. https://blog.csdn.net/feiwatson/articl ...
- python 安装模块 更新模块
#显示模块pip list #显示过期模块pip list --outdated #安装模块pip install xxx #升级模块pip install --upgrade xxx
- Linux 搭建 squid 代理服务器 三种模式
CentOS 6.7 squid 代理服务器 一般有两张或以上网卡,一张链接公网,访问外网资源,一张位于局域网. 代理服务器可以提供文件缓存.复制和地址过滤等服务,充分利用有限的出口带宽,加快内部主机 ...
- Spring Boot 2 (三):Spring Boot 开源软件都有哪些?
016年 Spring Boot 还没有被广泛使用,在网上查找相关开源软件的时候没有发现几个,到了现在经过2年的发展,很多互联网公司已经将 Spring Boot 搬上了生产,而使用 Spring B ...
- POJ3641 (快速幂) 判断a^p = a (mod p)是否成立
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...
- 笔记——python风格规范
分号 不要在行尾加分号, 也不要用分号将两条命令放在同一行. 行长度 每行不超过80个字符 例外: 长的导入模块语句 注释里的URL 不要使用反斜杠连接行. Python会将 圆括号, 中括号和花括号 ...
- Unity Water Shader
上图是一个物体浸入水中的效果 原理 我们使用相机渲染的整个场景的深度图减去需要忽略的模型的深度,这里忽略的是图中蓝色部分,就保留了其他的深度值. 用到Main Camera渲染的深度贴图: sampl ...
- 解方程(codevs 3732)
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 逆袭指数-——杭电校赛(dfs)
逆袭指数 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- cogs——2416. [HZOI 2016]公路修建
2416. [HZOI 2016]公路修建 ★☆ 输入文件:hzoi_road.in 输出文件:hzoi_road.out 简单对比时间限制:1 s 内存限制:128 MB [题目描述 ...