妙啊

这个题一上来就想的是莫比乌斯反演:

\[f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil \frac{r}{kd} \right \rceil-\left \lceil \frac{l-1}{kd} \right \rceil)^n
\]

但是看到r的范围发现前缀和不能处理于是不能分块于是时间复杂度为\( O(rlog_2n) \)于是GG。(其实是可以处理的但是我不会比较麻烦,而且复杂度高所以没写,方法详见PoPoQQQ大爷blog http://blog.csdn.net/popoqqq/article/details/44917831)

这时注意到r-l的范围看起来很可做,所以考虑复杂度与len有关的算法。

这里有一个性质,当a集合不全部相等时\( gcd(a_1,a_2...,a_n)=k,k\leq a_{max}-a_{min} \)。

证明:设\( {b_1,b_2...,b_n}={\frac {a_1} {k},\frac {a_2} {k},...,\frac {a_n} {k},} \),因为不全部相等,所以\( b_{max}-b_{min} \geq 1 \),所以\( (b_{max}-b_{min})*k=a_{max}-a_{min}\geq k \)

首先,\( l=(l-1)/k,r=r/k \)把问题转换为在新的\( (l,r) \)范围内求\( gcd==1 \) 的方案数(注意以下的l和r都是新的范围);

设\( f[i] \)为gcd为i时的方案数,可以求出gcd为i的倍数是的方案数\( sum=(\left \lceil r/i \right \rceil-\left \lceil l/i \right \rceil)^n-(\left \lceil r/i \right \rceil-\left \lceil l/i \right \rceil) \),减去的是集合内数字全部相等的方案个数。那么\( f[i]=sum - \sum_{i|j}^{j\leq len} f[j] \)。可以选择从后往前递推。

时间复杂度...理论上是\( O(lenlog_2len) \)或者 \( O(lenlog_2n) \),但是调和级数和快速幂的复杂度我不知道怎么加(躺

#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005,mod=1e9+7;
int n,k,l,r,len,p,f[N];
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=(long long)r*a%mod;
a=(long long)a*a%mod;
b>>=1;
}
return r;
}
int main()
{
scanf("%d%d%d%d",&n,&k,&l,&r);
if(l<=k&&r>=k)
p=1;
l=(l-1)/k,r=r/k,len=r-l;
for(int i=len;i>=1;i--)
{
int x=l/i,y=r/i;
f[i]=(ksm(y-x,n)-y+x+mod)%mod;//减去的是区间全部相等
for(int j=i*2;j<=len;j+=i)
f[i]=((f[i]-f[j])%mod+mod)%mod;
}
printf("%d\n",f[1]+p);
return 0;
}

bzoj 3930: [CQOI2015]选数【递推】的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. 3930: [CQOI2015]选数|递推|数论

    题目让求从区间[L,H]中可反复的选出n个数使其gcd=k的方案数 转化一下也就是从区间[⌈Lk⌉,⌊Hk⌋]中可反复的选出n个数使其gcd=1的方案数 然后f[i]表示gcd=i的方案数.考虑去掉全 ...

  3. 【递推】BZOJ 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  4. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. bzoj 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  6. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  7. bzoj 3930: [CQOI2015]选数【快速幂+容斥】

    参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...

  8. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  9. 【BZOJ】3930: [CQOI2015]选数

    题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...

随机推荐

  1. iOS 如何查看崩溃日志

    参考网址: [转载]https://www.jianshu.com/p/4de55d73c82b [转载]https://blog.csdn.net/qq_26544491/article/detai ...

  2. app后端搜索入门

    现在人们的网络生活已经离不开搜索了,遇到不懂的问题,想知道的事情,搜索一下,就知道答案. 在app中,最常见的搜索情景就是搜索用户.只有几百,几千的用户量时,可以直接用用like这样的模糊查询,但是, ...

  3. 在访问RESTful接口时出现:Could not write content: No serializer found for class的问题解决小技巧收集

    注意:市面上对于写RESTful是用RestFul,其实是不规范的,标准写法RESTful. 在Java上,处理这个应该是没有继承Serializable类,然后通过Eclipse生成serialVe ...

  4. Maven创建项目时出现Generating project in Interactive mode就一直卡住的解决方案

    使用maven命令在创建项目的时候出现 Generating project in Interactive mode 然后就一直卡住 网上搜做了很多解决方案 有说各种方案的,最后找到了一种.实验成功 ...

  5. Go---设计模式(策略模式)

    策略模式定义了算法家族,在调用算法家族的时候不感知算法的变化,客户也不会受到影响. 下面用<大话设计模式>中的一个实例进行改写. 例:超市中经常进行促销活动,促销活动的促销方法就是一个个策 ...

  6. 深度学习综述(LeCun、Bengio和Hinton)

    原文摘要:深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.这些方法在很多方面都带来了显著的改善,包含最先进的语音识别.视觉对象识别.对象检測和很多其他领域,比如药物发现和基 ...

  7. 2003-07-16T01:24:32Z这是什么时间格式

    这是标准的XML Schema的"日期型数据格式”. T是代表后面跟着“时间”.Z代表0时区,或者叫UTC统一时间. 世界的每个地区都有自己的本地时间,在Internet及无线电通信时,时间 ...

  8. 【转载】How browsers work--Behind the scenes of modern web browsers (前端必读)

    浏览器可以被认为是使用最广泛的软件,本文将介绍浏览器的工 作原理,我们将看到,从你在地址栏输入google.com到你看到google主页过程中都发生了什么. 将讨论的浏览器 今天,有五种主流浏览器- ...

  9. MVC架构在游戏开发中的应用

    一 定义 MVC即Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写. MVC是一种"前端"的设计模式. MV ...

  10. swift语言初见

    下面是swift得基础语法部分内容 //  main.swift //  helloSwift // //  Created by cyteven on 14-7-23. //  Copyright ...