SGD:

此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:

其中,是学习率,是梯度。 SGD完全依赖于当前batch的梯度,所以可理解为允许当前batch的梯度多大程度影响参数更新

缺点:

  • 选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时对于不经常出现的特征我们可能想更新快一些,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
  • SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点

梯度下降(其他的line search、trust region也一样)只有在原问题是凸问题的情况下,才能保证以任意精度(因为毕竟是数值方法)取得最优解。

非凸情况下,当有多个极大值或极小值时,需要对梯度下降进行优化,比如动量,NAG,Adagrad,RMSprop等,可以减少陷入极大值极小值的可能性,设置得当可以得到全局最优解,但并不能100%保证获得全局最优解。

Momentum:

momentum是模拟物理里动量的概念,更新的时候在一定程度上保留之前更新的方向,同时利用当前batch的梯度微调最终的更新方向,可以在一定程度上增加稳定性,从而学习更快,并且还有摆脱局部最优的能力。公式如下:

其中,是动量因子

特点:

  • 下降初期时,使用上一次参数更新,下降方向一致,乘上较大的能够进行很好的加速
  • 下降中后期时,在局部最小值来回震荡的时候,使得更新幅度增大,跳出陷阱
  • 在梯度改变方向的时候,能够减少更新 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛

Adagrad:

同一个更新速率不一定适合所有参数,比如有的参数可能已经到了仅需要微调的阶段,但又有些参数由于对应样本少等原因,还需要较大幅度的调动。Adagrad其实是对学习率进行了一个约束,每次迭代过程中,每个参数优化时使用不同的学习率。即:

此处,对从1到进行一个递推形成一个约束项regularizer,用来保证分母非0

特点:

  • 前期较小的时候, regularizer较大,能够放大梯度
  • 后期较大的时候,regularizer较小,能够约束梯度
  • 适合处理稀疏梯度

缺点:

  • 由公式可以看出,仍依赖于人工设置一个全局学习率
  • 设置过大的话,会使regularizer过于敏感,对梯度的调节太大
  • 中后期,分母上梯度平方的累加将会越来越大,使,使得训练提前结束

Adadelta:

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。 Adagrad会累加之前所有的梯度平方,Adadelta只使用adagrad的分母中的累计项离当前时间点比较近的项。即:

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:

其中,代表求期望。

此时,可以看出Adadelta已经不用依赖于全局学习率了。

Adam:

Adam(Adaptive Moment Estimation)是一种不同参数自适应不同学习速率方法,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

$m_t, n_t$分别是梯度的带权平均和带权有偏方差,初始为0向量,Adam的作者发现他们倾向于0向量(接近于0向量),特别是在衰减因子(衰减率)$\mu ,  \nu$接近于1时,所以要进行偏差修正,是对的校正。

论文中建议:$\mu = 0.9, \nu = 0.999, \epsilon = 10^{-8}$

特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
  • 对内存需求较小
  • 为不同的参数计算不同的自适应学习率
  • 也适用于大多非凸优化 - 适用于大数据集和高维空间

经验之谈

  • 对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
  • SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠
  • 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。

http://blog.csdn.net/heyongluoyao8/article/details/52478715

https://zhuanlan.zhihu.com/p/22252270

牛顿法  拟牛顿法的实现

http://blog.csdn.net/golden1314521/article/details/46225289


https://arxiv.org/pdf/1706.10207.pdf

机器学习优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)的更多相关文章

  1. [转载]机器学习优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam

    [转载]机器学习优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam https://blog.csdn.net/u010089444/article/details/76 ...

  2. 优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam)

    优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam) 2019年05月29日 01:07:50 糖葫芦君 阅读数 455更多 ...

  3. 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

    深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...

  4. zz:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

    首先定义:待优化参数:  ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch  : 计算目标函数关于当前参数的梯度:  根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降 ...

  5. 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

    Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框架看懂优化算法 机器学习界有一群炼丹师,他们每天的日常是: 拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着 ...

  6. 各种优化方法总结比较(sgd/momentum/Nesterov/adagrad/adadelta)

    前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. Batch gradient d ...

  7. 深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等

    机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣, ...

  8. Caffe学习系列(8):solver优化方法

    上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: &q ...

  9. [转]solver优化方法

    原文地址:http://www.cnblogs.com/denny402/p/5074212.html 到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Desc ...

随机推荐

  1. DocDokuPLM 2.5安装

    安装记录:(大部分是环境安装和配置) 未完待续.

  2. 又面试了Python爬虫工程师,碰到这么几道面试题,Python面试题No9

    第1题:动态加载又对及时性要求很高怎么处理? 如何知道一个网站是动态加载的数据? 用火狐或者谷歌浏览器 打开你网页,右键查看页面源代码,ctrl +F 查询输入内容,源代码里面并没有这个值,说明是动态 ...

  3. jQuery和Vue

    jQuery 概述 是js的一种函数库有美国人 John Resig编写 特点 写的少,做的多,国内用的jq1.0版本,可以兼容低版本的浏览器,支持链式编程或链式调用和隐式迭代 链式编程 $(this ...

  4. PAT Basic 1044

    1044 火星数字 火星人是以 13 进制计数的: 地球人的 0 被火星人称为 tret. 地球人数字 1 到 12 的火星文分别为:jan, feb, mar, apr, may, jun, jly ...

  5. pycharm的一些操作指令和技巧

    Alt+Enter 自动添加包Ctrl+t SVN更新Ctrl+k SVN提交Ctrl + / 注释(取消注释)选择的行Ctrl+Shift+F 高级查找Ctrl+Enter 补全Shift + En ...

  6. mac finder中添加自定义边栏

    想在finder中添加自定义边栏,操作如图所示: 选中边栏中任意边栏项,右键-在上层文件夹中显示,然后创建新的文件夹,将该文件夹拖到边栏中即可.

  7. [!] The ‘Pods-项目名XXX' target has frameworks with conflicting names:XXX.framework.

    在集成网易 即时通讯IM时报如下错误: [!] The ‘Pods-Yepu' target has frameworks with conflicting names: nimsdk.framewo ...

  8. DDL、DML、DCL、DQL的理解

    DDL.DML 和 DCL 的理解 DDL(data definition language)数据库定义语言 的主要语句(操作) Create 语句:可以创建数据库和数据库的一些对象. Drop 语句 ...

  9. 【MVC 1】MVC+EF实体框架—原理解析

    导读:在之前,我们学过了三层框架,即:UI.BLL.DAL.我们将页面显示.逻辑处理和数据访问进行分层,避免了一层.两层的混乱.而后,我们又在经典三层的基础上,应用设计模式:外观.抽象工厂+反射,使得 ...

  10. POJ-2318 TOYS,暴力+叉积判断!

                                                                 TOYS 2页的提交记录终于搞明白了. 题意:一个盒子由n块挡板分成n+1块区 ...