# Resnet.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, Sequential class BasicBlock(layers.Layer):
def __init__(self, filter_num, stride=1):
super(BasicBlock, self).__init__() self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same')
self.bn1 = layers.BatchNormalization()
self.relu = layers.Activation('relu') self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same')
self.bn2 = layers.BatchNormalization() if stride != 1:
self.downsample = Sequential()
self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
else:
self.downsample = lambda x: x def call(self, inputs, training=None):
# [b,h,w,c]
out = self.conv1(inputs)
out = self.bn1(out)
out = self.relu(out) out = self.conv2(out)
out = self.bn2(out) identity = self.downsample(inputs) output = layers.add([out, identity])
output = tf.nn.relu(output) return out

Res Block

ResNet18

# Resnet.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, Sequential class BasicBlock(layers.Layer):
def __init__(self, filter_num, stride=1):
super(BasicBlock, self).__init__() self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same')
self.bn1 = layers.BatchNormalization()
self.relu = layers.Activation('relu') self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same')
self.bn2 = layers.BatchNormalization() if stride != 1:
self.downsample = Sequential()
self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
else:
self.downsample = lambda x: x def call(self, inputs, training=None):
# [b,h,w,c]
out = self.conv1(inputs)
out = self.bn1(out)
out = self.relu(out) out = self.conv2(out)
out = self.bn2(out) identity = self.downsample(inputs) output = layers.add([out, identity])
output = tf.nn.relu(output) return out class ResNet(keras.Model):
def __init__(self, layer_dims, num_classes=100): # [2,2,2,2]
super(ResNet, self).__init__() # 根部
self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1,)),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding='same')
]) # 64,128,256,512是通道数
self.layer1 = self.build_resblock(64, layer_dims[0])
self.layer2 = self.build_resblock(128, layer_dims[1], stride=2)
self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
self.layer4 = self.build_resblock(512, layer_dims[3], stride=2) # output: [b, 512, h, w]
self.avgpool = layers.GlobalAveragePooling2D()
self.fc = layers.Dense(num_classes) # 分类 def call(self, inputs, training=None):
x = self.stem(inputs) x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x) # [b, c]
x = self.avgpool(x)
# [b]
x = self.fc(x) return x def build_resblock(self, filter_num, blocks, stride=1):
res_blocks = Sequential()
# may down sample
res_blocks.add(BasicBlock(filter_num, stride)) for _ in range(1, blocks):
res_blocks.add(BasicBlock(filter_num, stride=1)) return res_blocks def resnet18():
return ResNet([2, 2, 2, 2]) def resnet34():
return ResNet([3, 4, 6, 3])
# resnet18_train.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os
from Resnet import resnet18 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.random.set_seed(2345) def preprocess(x, y):
# [-1~1]
x = tf.cast(x, dtype=tf.float32) / 255. - 0.5
y = tf.cast(y, dtype=tf.int32)
return x, y (x, y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape) train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).map(preprocess).batch(512) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocess).batch(512) sample = next(iter(train_db))
print('sample:', sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]), tf.reduce_max(sample[0])) def main():
# [b, 32, 32, 3] => [b, 1, 1, 512]
model = resnet18()
model.build(input_shape=(None, 32, 32, 3))
model.summary()
optimizer = optimizers.Adam(lr=1e-3) for epoch in range(500): for step, (x, y) in enumerate(train_db): with tf.GradientTape() as tape:
# [b, 32, 32, 3] => [b, 100]
logits = model(x)
# [b] => [b, 100]
y_onehot = tf.one_hot(y, depth=100)
# compute loss
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss) grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step % 50 == 0:
print(epoch, step, 'loss:', float(loss)) total_num = 0
total_correct = 0
for x, y in test_db:
logits = model(x)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32) correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct) total_num += x.shape[0]
total_correct += int(correct) acc = total_correct / total_num
print(epoch, 'acc:', acc) if __name__ == '__main__':
main()
(50000, 32, 32, 3) (50000,) (10000, 32, 32, 3) (10000,)
sample: (512, 32, 32, 3) (512,) tf.Tensor(-0.5, shape=(), dtype=float32) tf.Tensor(0.5, shape=(), dtype=float32)
Model: "res_net"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
sequential (Sequential) multiple 2048
_________________________________________________________________
sequential_1 (Sequential) multiple 148736
_________________________________________________________________
sequential_2 (Sequential) multiple 526976
_________________________________________________________________
sequential_4 (Sequential) multiple 2102528
_________________________________________________________________
sequential_6 (Sequential) multiple 8399360
_________________________________________________________________
global_average_pooling2d (Gl multiple 0
_________________________________________________________________
dense (Dense) multiple 51300
=================================================================
Total params: 11,230,948
Trainable params: 11,223,140
Non-trainable params: 7,808
_________________________________________________________________ WARNING: Logging before flag parsing goes to stderr.
W0601 16:59:57.619546 4664264128 optimizer_v2.py:928] Gradients does not exist for variables ['sequential_2/basic_block_2/sequential_3/conv2d_7/kernel:0', 'sequential_2/basic_block_2/sequential_3/conv2d_7/bias:0', 'sequential_4/basic_block_4/sequential_5/conv2d_12/kernel:0', 'sequential_4/basic_block_4/sequential_5/conv2d_12/bias:0', 'sequential_6/basic_block_6/sequential_7/conv2d_17/kernel:0', 'sequential_6/basic_block_6/sequential_7/conv2d_17/bias:0'] when minimizing the loss. 0 0 loss: 4.60512638092041

Out of memory

    1. decrease batch size
    1. tune resnet[2,2,2,2]
    1. try Google CoLab
    1. buy new NVIDIA GPU Card

ResNet实战的更多相关文章

  1. TensorFlow2教程(目录)

    第一篇 基本操作 01 Tensor数据类型 02 创建Tensor 03 Tensor索引和切片 04 维度变换 05 Broadcasting 06 数学运算 07 前向传播(张量)- 实战 第二 ...

  2. Pytorch1.0入门实战三:ResNet实现cifar-10分类,利用visdom可视化训练过程

    人的理想志向往往和他的能力成正比. —— 约翰逊 最近一直在使用pytorch深度学习框架,很想用pytorch搞点事情出来,但是框架中一些基本的原理得懂!本次,利用pytorch实现ResNet神经 ...

  3. Pytorch1.0入门实战二:LeNet、AleNet、VGG、GoogLeNet、ResNet模型详解

    LeNet 1998年,LeCun提出了第一个真正的卷积神经网络,也是整个神经网络的开山之作,称为LeNet,现在主要指的是LeNet5或LeNet-5,如图1.1所示.它的主要特征是将卷积层和下采样 ...

  4. [深度应用]·实战掌握PyTorch图片分类简明教程

    [深度应用]·实战掌握PyTorch图片分类简明教程 个人网站--> http://www.yansongsong.cn/ 项目GitHub地址--> https://github.com ...

  5. 学习笔记TF033:实现ResNet

    ResNet(Residual Neural Network),微软研究院 Kaiming He等4名华人提出.通过Residual Unit训练152层深神经网络,ILSVRC 2015比赛冠军,3 ...

  6. Reading | 《TensorFlow:实战Google深度学习框架》

    目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...

  7. 人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练

    人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练 MXNet 是一个轻量级.可移植.灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 ...

  8. 【深度学习】基于Pytorch的ResNet实现

    目录 1. ResNet理论 2. pytorch实现 2.1 基础卷积 2.2 模块 2.3 使用ResNet模块进行迁移学习 1. ResNet理论 论文:https://arxiv.org/pd ...

  9. tensorflow学习笔记——ResNet

    自2012年AlexNet提出以来,图像分类.目标检测等一系列领域都被卷积神经网络CNN统治着.接下来的时间里,人们不断设计新的深度学习网络模型来获得更好的训练效果.一般而言,许多网络结构的改进(例如 ...

随机推荐

  1. H5页面在微信端的分享

    微信分享,咋一看好像很复杂,实则非常简单.只需要调用微信官方出的微信jssdk,加上些许配置,就可以实现h5页面在微信上的分享,官方文档地址为:https://mp.weixin.qq.com/wik ...

  2. 【爬坑系列】之vxlan网络实现

    linux 内核从3.7之后就内部集成了vxlan功能,所以可以使用linux内核提供的vxlan功能,经过配置创建vxlan网络. 而从Docker自Docker Engine 1.9之后,就自带o ...

  3. 初学Linux应该注意的事项

    相比于windows linux严格区分大小写 linux所有内容都是以文件形式保存 linux不靠扩展名区分文件类型(靠权限),linux下文件扩展名主要是方便管理员分类 linux所有的存储设备都 ...

  4. [C++11新特性] 智能指针详解

    动态内存的使用很容易出问题,因为确保在正确的时间释放内存是极为困难的.有时我们会忘记释放内存产生内存泄漏,有时提前释放了内存,再使用指针去引用内存就会报错. 为了更容易(同时也更安全)地使用动态内存, ...

  5. SSRS域账号下 User 'XXX' does not have required permissions的处理方法

    SSRS安装完成后,点击Report Manager URL,提示:User 'XXX' does not have required permissions. Verify that suffici ...

  6. android将对象序列化到文件:直接写文件与用Serializable接口的对比

    1.用文件读写1024个对象的日志 10-09 16:12:44.493 6385-6385/com.example.tt.downtest D/Serializable_TAG: write 102 ...

  7. C#不允许在foreach循环中改变数组或集合中元素的值(注:成员的值不受影响)

    C#不允许在foreach循环中改变数组或集合中元素的值(注:成员的值不受影响),如以下代码将无法通过编译. foreach (int x in myArray) { x++; //错误代码,因为改变 ...

  8. DateFormat类

    package Format_daqo; import java.util.Date; import java.text.DateFormat; public class DateFormatTest ...

  9. mysqlshow(数据库对象查看工具)

    mysqlshow是mysql客户端对象查看工具,可以用来查看数据库.数据库中的表.表中的列.索引等. 1.mysqlshow命令的语法 shell > mysqlshow [options] ...

  10. composer Failed to decode zlib stream 无法解码zlib流

    Win7 中安装 Composer (PHP) 国内有些网络不能访问美国的Composer官网,可访问 Composer 中文网 学习. 目标 可以在任何目录下的项目中执行 PHP composer. ...