【POJ 3292】 Semi-prime H-numbers



打个表

题意是1 5 9 13...这样的4的n次方+1定义为H-numbers

H-numbers中仅仅由1*自己这一种方式组成 即没有其它因子的 叫做H-prime

两个H-prime的乘积叫做H-semi-prime 另一个要求是H-semi-prime仅仅能由两个H-prime组成 即4个H-number 不可由3个或几个H-number构成

筛出来个满足题意的表 把每一个数内满足的个数存起来O(1)输出就可以

代码例如以下:

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
const int sz = 1000001; int IsPrim[sz+1];
int p[sz];
int tp; void Init()
{
memset(IsPrim,0,sizeof(IsPrim));//H-numbers都初始化0 即默认都为H-prime
int i,j,cnt;
tp = 1;
for(i = 5; i <= sz; i += 4)
{
for(j = 5; j*i <= sz; j += 4)
{
if(IsPrim[i] || IsPrim[j])//两个数有一个不是H-prime 组合就不为H-semi-prime
IsPrim[i*j] = -1;
else IsPrim[i*j] = 1;//否则组合为H-semi-prime 注意 H-semi-prime就不为H-prime了 因为顺序枚举 后面遍历到的之前肯定会推断一下 故不会漏判
}
}
cnt = 0;
for(i = 1; i <= 1000001; ++i)
{
if(IsPrim[i] == 1) cnt++; p[tp++] = cnt;
}
} int main()
{
Init();
int h;
while(~scanf("%d",&h) && h)
{
h = (h-1)/4*4+1;
printf("%d %d\n",h,p[h]);
}
return 0;
}

【POJ 3292】 Semi-prime H-numbers的更多相关文章

  1. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  2. 【POJ 1741】Tree

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11570   Accepted: 3626 Description ...

  3. 2292: 【POJ Challenge 】永远挑战

    2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 230[Submit][ ...

  4. 【POJ 3140】 Contestants Division(树型dp)

    id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS   Memory Limit: 65536K Tot ...

  5. 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)

    [POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS   Memory Limit: 10 ...

  6. 【POJ 2486】 Apple Tree(树型dp)

    [POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8981   Acce ...

  7. 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)

    [POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS   Memory Limit: 65536K Total Su ...

  8. 【POJ 2750】 Potted Flower(线段树套dp)

    [POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4566   ...

  9. 【POJ 2195】 Going Home(KM算法求最小权匹配)

    [POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

随机推荐

  1. adb 常用命令详解

    1.把电脑上文件或目录copy到手机中:adb push <local> <remote>    - copy file/dir to device 此处的<local& ...

  2. 学习Gulp过程中遇到的一些单词含义

    注:以下有的单词的含义不仅仅在gulp里面是一样的,在其他某些语言里面也是一样 nodejs Doc:https://nodejs.org/api/stream.html gulp Api:http: ...

  3. Python第三方库之openpyxl(2)

    Python第三方库之openpyxl(2) 简单的使用 写一个工作簿 >>> from openpyxl import Workbook >>> from ope ...

  4. C/C++复杂类型声明

    曾经碰到过让你迷惑不解.类似于int * (* (*fp1) (int) ) [10];这样的变量声明吗?本文将由易到难,一步一步教会你如何理解这种复杂的C/C++声明.   我们将从每天都能碰到的较 ...

  5. 使用pipework将Docker容器桥接到本地网络环境中

    在使用Docker的过程中,有时候我们会有将Docker容器配置到和主机同一网段的需求.要实现这个需求,我们只要将Docker容器和主机的网卡桥接起来,再给Docker容器配上IP就可以了.pipew ...

  6. x86保护模式 实模式与保护模式切换实例

    x86保护模式     实模式与保护模式切换实例 实例一 逻辑功能   以十六进制数的形式显示从内存地址110000h开始的256个字节的值    实现步骤: 1  切换保护方式的准备 2. 切换到保 ...

  7. Python之转换py文件为无需依赖python环境的exe文件的方法

    在日常工作中,使用python脚本开发快速敏捷,但是其代码是可见的,而且充分的依赖python开发环境.为了达到保护我们源码的目的,或者不依赖python开发环境使用python脚本,将其转换成可以直 ...

  8. ElasticSearch聚合aggs入门

    Elasticsearch是一款功能强大的开源软件,不仅可以检索排序,还可以对文档进行更复杂的操作--聚合. 1.单值聚合 Sum求和,dsl参考如下: { "size": 0, ...

  9. hdu - 2667 Proving Equivalences(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=2767 求至少添加多少条边才能变成强连通分量.统计入度为0的点和出度为0的点,取最大值即可. #include & ...

  10. java 常用的解析工具

    这里介绍两种 java 解析工具. 第一种:java 解析 html 工具 jsoup 第二种: java 解析 XML 工具 Dom4j jsoup jsoup是一个用于处理真实HTML的Java库 ...