花纹的生成可以使用贴图的方式,同样也可以使用方程,本文列出了几种常用曲线的方程式,以取代贴图方式完成特定花纹的生成。

注意极坐标的使用.................

前面部分基础资料,参考:Python:Matplotlib 画曲线和柱状图(Code)

Pyplot教程:https://matplotlib.org/gallery/index.html#pyplots-examples

顾名思义,蝴蝶曲线(Butterfly curve )就是曲线形状如同蝴蝶。蝴蝶曲线如图所示,以方程描述,是一条六次平面曲线。如果大家觉得这个太过简单,别着急,还有第二种。如图所示,以方程描述,这是一个极坐标方程。通过改变这个方程中的变量θ,可以得到不同形状与方向的蝴蝶曲线。如果再施以复杂的组合和变换,我们看到的就完全称得上是一幅艺术品了。

Python代码:

import numpy as np
import matplotlib.pyplot as plt
import os,sys,caffe import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D #draw lorenz attractor
# %matplotlib inline
from math import sin, cos, pi
import math def mainex():
#drawSpringCrurve();#画柱坐标系螺旋曲线
#HelicalCurve();#采用柱坐标系#尖螺旋曲线
#Votex3D();
#phoenixCurve();
#ButterflyCurve();
#ButterflyNormalCurve();
#dicareCurve2d();
#WindmillCurve3d();
#HelixBallCurve();#球面螺旋线
#AppleCurve();
#HelixInCircleCurve();#使用scatter,排序有问题
seperialHelix(); def drawSpringCrurve():
#碟形弹簧
#圓柱坐标
#方程:
#import matplotlib as mpl
#from mpl_toolkits.mplot3d import Axes3D
#import numpy as np
#import matplotlib.pyplot as plt
mpl.rcParams['legend.fontsize'] = 10; fig = plt.figure();
ax = fig.gca(projection='3d'); # Prepare arrays x, y, z
#theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
#z = np.linspace(-2, 2, 100)
#r = z**2 + 1 t = np.arange(0,100,1);
r = t*0 +20;
theta = t*3600 ; z = np.arange(0,100,1);
for i in range(100):
z[i] =(sin(3.5*theta[i]-90))+24*t[i]; x = r * np.sin(theta);
y = r * np.cos(theta); ax.plot(x, y, z, label='SpringCrurve');
ax.legend(); plt.show(); def HelicalCurve():
#螺旋曲线#采用柱坐标系
t = np.arange(0,100,1);
r =t ;
theta=10+t*(20*360);
z =t*3; x = r * np.sin(theta);
y = r * np.cos(theta); mpl.rcParams['legend.fontsize'] = 10;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='HelicalCurve');
ax.legend(); plt.show(); def ButterflyCurve():
#蝶形曲线,使用球坐标系#或许公式是错误的,应该有更加复杂的公式
t = np.arange(0,4,0.01); r = 8 * t;
theta = 3.6 * t * 2*1 ;
phi = -3.6 * t * 4*1; x = t*1;
y = t*1;
#z = t*1;
z =0
for i in range(len(t)):
x[i] = r[i] * np.sin(theta[i])*np.cos(phi[i]);
y[i] = r[i] * np.sin(theta[i])*np.sin(phi[i]);
#z[i] = r[i] * np.cos(theta[i]);
mpl.rcParams['legend.fontsize'] = 10;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='ButterflyCurve');
#ax.scatter(x, y, z, label='ButterflyCurve');
ax.legend(); plt.show(); def ButterflyNormalCurve():
#蝶形曲线,使用球坐标系#或许公式是错误的,应该有更加复杂的公式
#螺旋曲线#采用柱坐标系
#t = np.arange(0,100,1); theta=np.arange(0,6,0.1);#(0,72,0.1);
r =theta*0;
z =theta*0; x =theta*0;
y =theta*0;
for i in range(len(theta)):
r[i] = np.power(math.e,sin(theta[i]))- 2*cos(4*theta[i])
+ np.power( sin(1/24 * (2*theta[i] -pi ) ) , 5 );
#x[i] = r[i] * np.sin(theta[i]);
#y[i] = r[i] * np.cos(theta[i]);
x = r * np.sin(theta);
y = r * np.cos(theta);
mpl.rcParams['legend.fontsize'] = 10;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='ButterflyNormalCurve');
ax.legend(); plt.show(); def phoenixCurve():
#蝶形曲线,使用球坐标系
t = np.arange(0,100,1); r = 8 * t;
theta = 360 * t * 4 ;
phi = -360 * t * 8; x = t*1;
y = t*1;
z = t*1;
for i in range(len(t)):
x[i] = r[i] * np.sin(theta[i])*np.cos(phi[i]);
y[i] = r[i] * np.sin(theta[i])*np.sin(phi[i]);
z[i] = r[i] * np.cos(theta[i]);
mpl.rcParams['legend.fontsize'] = 10;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='phoenixCurve');
ax.legend(); plt.show(); def dicareCurve2d(): r = np.arange(0, 2, 0.01)
theta = 2 * np.pi * r ax = plt.subplot(111, projection='polar')
ax.plot(theta, r)
ax.set_rmax(2)
ax.set_rticks([0.5, 1, 1.5, 2]) # Less radial ticks
ax.set_rlabel_position(-22.5) # Move radial labels away from plotted line
ax.grid(True) ax.set_title("dicareCurve2d", va='bottom')
plt.show(); def WindmillCurve3d():
#风车曲线
t = np.arange(0,2,0.01);
r =t*0+1 ; #r=1
ang =36*t;#ang =360*t;
s =2*pi*r*t; x = t*1;
y = t*1;
for i in range(len(t)):
x[i] = s[i]*cos(ang[i]) +s[i]*sin(ang[i]) ;
y[i] = s[i]*sin(ang[i]) -s[i]*cos(ang[i]) ; z =t*0; mpl.rcParams['legend.fontsize'] = 10;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='WindmillCurve3d');
ax.legend(); plt.show(); def HelixBallCurve():
#螺旋曲线,使用球坐标系
t = np.arange(0,2,0.005);
r =t*0+4 ;
theta =t*1.8
phi =t*3.6*20 x = t*1;
y = t*1;
z = t*1;
for i in range(len(t)):
x[i] = r[i] * np.sin(theta[i])*np.cos(phi[i]);
y[i] = r[i] * np.sin(theta[i])*np.sin(phi[i]);
z[i] = r[i] * np.cos(theta[i]);
mpl.rcParams['legend.fontsize'] = 10;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='HelixBallCurve');
ax.legend(); plt.show(); def seperialHelix():
#螺旋曲线,使用球坐标系
t = np.arange(0,2,0.1);
n = np.arange(0,2,0.1);
r =t*0+4 ;
theta =n*1.8 ;
phi =n*3.6*20; x = t*0;
y = t*0;
z = t*0;
for i in range(len(t)):
x[i] = r[i] * np.sin(theta[i])*np.cos(phi[i]);
y[i] = r[i] * np.sin(theta[i])*np.sin(phi[i]);
z[i] = r[i] * np.cos(theta[i]); mpl.rcParams['legend.fontsize'] = 10;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='ButterflyCurve');
ax.legend(); plt.show(); def AppleCurve():
#螺旋曲线
t = np.arange(0,2,0.01); l=2.5
b=2.5
x = t*1;
y = t*1;
z =0;#z=t*0;
n = 36
for i in range(len(t)):
x[i]=3*b*cos(t[i]*n)+l*cos(3*t[i]*n)
y[i]=3*b*sin(t[i]*n)+l*sin(3*t[i]*n) #x = r * np.sin(theta);
#y = r * np.cos(theta); mpl.rcParams['legend.fontsize'] = 10;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='AppleCurve');
ax.legend(); plt.show(); def HelixInCircleCurve():
#园内螺旋曲线#采用柱坐标系
t = np.arange(-1,1,0.01); theta=t*36 ;#360 deta 0.005鸟巢网 #36 deta 0.005 圆内曲线
x = t*1;
y = t*1;
z = t*1;
r = t*1;
n = 1.2
for i in range(len(t)):
r[i]=10+10*sin(n*theta[i]);
z[i]=2*sin(n*theta[i]);
x[i] = r[i] * np.sin(theta[i]);
y[i] = r[i] * np.cos(theta[i]); mpl.rcParams['legend.fontsize'] = 3;
fig = plt.figure();
ax = fig.gca(projection='3d'); ax.plot(x, y, z, label='HelixInCircleCurve');
#ax.scatter(x, y, z, label='HelixInCircleCurve');
ax.legend(); plt.show(); def Votex3D(): def midpoints(x):
sl = ()
for i in range(x.ndim):
x = (x[sl + np.index_exp[:-1]] + x[sl + np.index_exp[1:]]) / 2.0
sl += np.index_exp[:]
return x # prepare some coordinates, and attach rgb values to each
r, g, b = np.indices((17, 17, 17)) / 16.0
rc = midpoints(r)
gc = midpoints(g)
bc = midpoints(b) # define a sphere about [0.5, 0.5, 0.5]
sphere = (rc - 0.5)**2 + (gc - 0.5)**2 + (bc - 0.5)**2 < 0.5**2 # combine the color components
colors = np.zeros(sphere.shape + (3,))
colors[..., 0] = rc
colors[..., 1] = gc
colors[..., 2] = bc # and plot everything
fig = plt.figure();
ax = fig.gca(projection='3d');
ax.voxels(r, g, b, sphere,
facecolors=colors,
edgecolors=np.clip(2*colors - 0.5, 0, 1), # brighter
linewidth=0.5);
ax.set(xlabel='r', ylabel='g', zlabel='b');
plt.show(); def drawFiveFlower():
theta=np.arange(0,2*np.pi,0.02)
#plt.subplot(121,polar=True)
#plt.plot(theta,2*np.ones_like(theta),lw=2)
#plt.plot(theta,theta/6,'--',lw=2)
#plt.subplot(122,polar=True)
plt.subplot(111,polar=True)
plt.plot(theta,np.cos(5*theta),'--',lw=2)
plt.plot(theta,2*np.cos(4*theta),lw=2)
plt.rgrids(np.arange(0.5,2,0.5),angle=45)
plt.thetagrids([0,45,90]); plt.show(); if __name__ == '__main__':
import argparse
mainex();

画图结果:

  

  

   

   

    

ProE常用曲线方程:Python Matplotlib 版本代码(蝴蝶曲线)的更多相关文章

  1. ProE常用曲线方程:Python Matplotlib 版本代码(玫瑰曲线)

    Pyplot教程:https://matplotlib.org/gallery/index.html#pyplots-examples 玫瑰曲线 文字描述 平面内,围绕某一中心点平均分布整数个正弦花瓣 ...

  2. ProE复杂曲线方程:Python Matplotlib 版本代码(L系统,吸引子和分形)

    对生长自动机的研究由来已久,并在计算机科学等众多学科中,使用元胞自动机的概念,用于生长模拟.而复杂花纹的生成,则可以通过重写一定的生长规则,使用生成式来模拟自然纹理.当然,很多纹理是由人本身设计的,其 ...

  3. 常用统计分析python包开源学习代码 numpy pandas matplotlib

    常用统计分析python包开源学习代码 numpy pandas matplotlib 待办 https://github.com/zmzhouXJTU/Python-Data-Analysis

  4. python 低版本一段扫描代码

    个人在做Linux渗透测试往内网跨的时候,通常我碰到的Linux环境都会是如下集中情况 1: DMZ,严格的DMZ,根本跨不到内网里去.这种最恶心了. 2:WEB SERVER,严格区分,工作机和工作 ...

  5. python 常忘代码查询 和autohotkey补括号脚本和一些笔记和面试常见问题

    笔试一些注意点: --,23点43 今天做的京东笔试题目: 编程题目一定要先写变量取None的情况.今天就是因为没有写这个边界条件所以程序一直不对.以后要注意!!!!!!!!!!!!!!!!!!!!! ...

  6. 一文总结数据科学家常用的Python库(下)

    用于建模的Python库 我们已经到达了本文最受期待的部分 - 构建模型!这就是我们大多数人首先进入数据科学领域的原因,不是吗? 让我们通过这三个Python库探索模型构建. Scikit-learn ...

  7. 总结数据科学家常用的Python库

    概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库 ...

  8. Python - matplotlib 数据可视化

    在许多实际问题中,经常要对给出的数据进行可视化,便于观察. 今天专门针对Python中的数据可视化模块--matplotlib这块内容系统的整理,方便查找使用. 本文来自于对<利用python进 ...

  9. 我常用的 Python 调试工具 - 博客 - 伯乐在线

    .ckrating_highly_rated {background-color:#FFFFCC !important;} .ckrating_poorly_rated {opacity:0.6;fi ...

随机推荐

  1. Ubuntu 16.04下没有“用户和组”功能的问题解决

    在16.04以前的版本会自带“用户和组”的功能,但是在16.04发现系统只自带了“用户账户”的功能. 问题解决: 1.安装gnome-system-tools sudo apt-get install ...

  2. Java数组备忘录

    前言 近期用Java做ACM题目的时候,常常忘记数组怎样实现静态初始化,所以这里记录一下Java数组使用的常识. Java数组常识 数组在Java中是一个对象,数组实例须要通过new操作符进行创建. ...

  3. Redis源代码分析(三十)--- pubsub公布订阅模式

    今天学习了Redis中比較高大上的名词,"公布订阅模式".公布订阅模式这个词在我最開始接触听说的时候是在JMS(Java Message Service)java消息服务中听说的. ...

  4. android开发艺术探索学习 之 结合Activity的生命周期了解Activity的LaunchMode

    转载请标明出处: http://blog.csdn.net/lxk_1993/article/details/50749728 本文出自:[lxk_1993的博客]: 首先还是先介绍下Activity ...

  5. TomCatserver的安装,环境的配置,服务的启动以及验证---ShinePans

    首先下载 TomCat 6: http://yunpan.cn/cg5icf3dha4k3  提取码 34c5 然后配置环境变量: 电脑>>>属性>>>高级系统设置 ...

  6. HDU 4249 A Famous Equation(数位DP)

    题目链接:点击打开链接 思路:用d[i][a][b][c][is]表示当前到了第i位, 三个数的i位各自是a,b,c, 是否有进位 , 的方法数. 细节參见代码: #include<cstdio ...

  7. POJ 2367:Genealogical tree(拓扑排序)

    Genealogical tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2738 Accepted: 1838 Spe ...

  8. luogu1040 加分二叉树

    题目大意 设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第j个节点的分数为di,tree及它的每个子树都 ...

  9. Silverlight访问数据库大全(转)

    Silverlight访问数据库大全 Silverlight访问数据库大全 Posted on 2010-06-13 17:25 moss_tan_jun 阅读(1917) 评论(0) 编辑 收藏 最 ...

  10. C#在WinForm中使用WebKit传递js对象实现与网页交互的方法

    这篇文章主要介绍了C#在WinForm中使用WebKit传递js对象实现与网页交互的方法,涉及针对WebBroswer控件及WebKit控件的相关使用技巧,需要的朋友可以参考下 本文实例讲述了C#在W ...