题目链接:

Intersection

Time Limit: 4000/4000 MS (Java/Others)    

Memory Limit: 512000/512000 K (Java/Others)

Problem Description
 
Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The following figures are some famous examples you may know.


A ring is a 2-D figure bounded by two circles sharing the common center. The radius for these circles are denoted by r and R (r < R). For more details, refer to the gray part in the illustration below.


Matt just designed a new logo consisting of two rings with the same size in the 2-D plane. For his interests, Matt would like to know the area of the intersection of these two rings.

 
Input
 
The first line contains only one integer T (T ≤ 105), which indicates the number of test cases. For each test case, the first line contains two integers r, R (0 ≤ r < R ≤ 10).

Each of the following two lines contains two integers xi, yi (0 ≤ xi, yi ≤ 20) indicating the coordinates of the center of each ring.

 
Output
 
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the area of intersection rounded to 6 decimal places.
 
Sample Input
 
2
2 3
0 0
0 0
2 3
0 0
5 0
 
Sample Output
 
Case #1: 15.707963
Case #2: 2.250778
 
题意
 
求两个圆环相交的面积;
 
思路
 
ans=两个大圆的面积交+两个小圆的面积交-2*大圆与小圆的面积交;
 
AC代码
 
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=1e5+;
const LL mod=1e9+;
const double PI=acos(-1.0);
double fun(double x,double y,double fx,double fy,double r,double R)
{
double dis=sqrt((x-fx)*(x-fx)+(y-fy)*(y-fy));
//cout<<dis<<endl;
if(dis>=r+R)return ;
else if(dis<=R-r)
{
return PI*r*r;
}
else
{
double angle1,angle2,s1,s2,s3,s;
angle1=acos((r*r+dis*dis-R*R)/(*r*dis));
angle2=acos((R*R+dis*dis-r*r)/(*R*dis)); s1=angle1*r*r;s2=angle2*R*R;
s3=r*dis*sin(angle1);
s=s1+s2-s3;
return s;
}
}
int main()
{
int t;
scanf("%d",&t);
double r,R,x,y,fx,fy;
int cnt=;
while(t--)
{ scanf("%lf%lf",&r,&R);
scanf("%lf%lf%lf%lf",&x,&y,&fx,&fy);
double ans1,ans2,ans3,ans4;
ans1=fun(x,y,fx,fy,R,R);
ans2=fun(x,y,fx,fy,r,r);
ans3=fun(x,y,fx,fy,r,R);
ans4=fun(fx,fy,x,y,r,R);
printf("Case #%d: ",cnt++);
printf("%.6lf\n",ans1+ans2-ans3-ans4);
} }

hdu-5120 Intersection(计算几何)的更多相关文章

  1. HDU 5120 Intersection(2014北京赛区现场赛I题 计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5120 解题报告:给你两个完全相同的圆环,要你求这两个圆环相交的部分面积是多少? 题意看了好久没懂.圆环 ...

  2. 计算几何(容斥原理,圆交):HDU 5120 Intersection

    Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The followin ...

  3. hdu 5120 Intersection

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5120 A ring is a 2-D figure bounded by two circles sh ...

  4. hdu 5120 Intersection 圆环面积交

    Intersection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5 ...

  5. hdu 5120 Intersection 两个圆的面积交

    Intersection Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others) P ...

  6. hdu 5120 Intersection (圆环面积相交->圆面积相交)

    Problem Description Matt is a big fan of logo design. Recently he falls in love with logo made up by ...

  7. HDU 5120 Intersection(几何模板题)

    题意:给定两个圆环,求两个圆环相交的面积. 思路:由于圆心和半径不一样,分了好多种情况,后来发现只要把两个圆相交的函数写好之后就不需要那么复杂了.两个圆相交的面积的模板如下: double area_ ...

  8. HDU 5120 Intersection (圆的面积交)

    题意:给定两个圆环,求两个圆环的面积交. 析:很容易知道,圆环面积交就是,大圆与大圆面积交 - 大圆和小圆面积交 - 小圆和大圆面积交 + 小圆和小圆面积交. 代码如下: #pragma commen ...

  9. HDU 4998 Rotate (计算几何)

    HDU 4998 Rotate (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4998 Description Noting is more ...

  10. hdu 4643 GSM 计算几何 - 点线关系

    /* hdu 4643 GSM 计算几何 - 点线关系 N个城市,任意两个城市之间都有沿他们之间直线的铁路 M个基站 问从城市A到城市B需要切换几次基站 当从基站a切换到基站b时,切换的地点就是ab的 ...

随机推荐

  1. MySQL与MSSQL的一些语法差异(持续更新中)

    分号不能少:分号不能少:分号不能少:重要的事情说3遍 Insert或者Update的数据包含反斜杠\的时候需要进行转义\\,例:insert into tablename(id,name) value ...

  2. Java到底是值传递还是引用传递

    什么是按值传递,什么是按引用传递 按值调用(call by value) : 在参数传递过程中,形参和实参占用了两个完全不同的内存空间.形参所存储的内容是实参存储内容的一份拷贝. 按引用调用:在参数传 ...

  3. keras常见问题解答

    https://keras.io/zh/getting-started/faq/ https://keras.io/zh/ https://github.com/keras-team/keras/tr ...

  4. 王立平--GUI与GUILayout的差别

    GUI.Button (new Rect(0,0,5,5,"哈哈"); GUILayout.Button ("heheh"); 1.以上代码都是现实一个butt ...

  5. XUtils BitmapUtils 改造以加入drawable支持

    === XUtilsBitmapUtils 改造以加入drawable支持 === # XUtils 简单介绍 XUtils 是一套少有的早期国产安卓框架, 其源于AFinal, 文件夹结构也与之相似 ...

  6. mongoVUE 破解方法

    mongoVUE1.5.3的破解方法其实很简单 注册表中查找B1159E65-821C3-21C5-CE21-34A484D54444中的子项4FF78130 ,删除其下的三个子项即可. 开始-运行- ...

  7. 怎样查询锁表的SQL

    通过以下的语句查询出锁表的SQL: select l.session_id sid, s.serial#,        l.locked_mode,        l.oracle_username ...

  8. 服务器----1U、2U、3U、4U

    U是一种表示服务器外部尺寸的单位,是unit的缩略语,详细的尺寸由作为业界团体的美国电子工业协会(EIA)所决定. 之所以要规定服务器的尺寸,是为了使服务器保持适当的尺寸以便放在铁质或铝质的机架上.机 ...

  9. 疯狂Java学习笔记(77)-----------凝视注意事项

    代码凝视,能够说是比代码本身更重要.这里有一些方法能够确保你写在代码中的凝视是友好的: 不要反复阅读者已经知道的内容 能明白说明代码是做什么的凝视对我们是没有帮助的. // If the color ...

  10. Qt linux文件同步写入

    因为linux 系统机制问题,文件的创建和写入并不会直接写入硬盘.而是先写入缓存,当系统要关闭或须要时才写入硬盘.为防止突然掉电,应将缓存中的文件及时同步到硬盘上去. linux 下的sync 命令具 ...