题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143

只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望;

每条边经过的概率是其两端的点被走的次数/该点的度数的和;

而每个点被走的次数又需要从与其相连的点推过来,所以构成n个n元方程,进行高斯消元求解;

其中点n较为特殊,可以不去管它,因为所有路径到n后就不再走出来,也就是n到n的概率为0;

而因为所有路径从点1开始,所以1的次数平地+1。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int const M=*;
int n,m,u[M],v[M],d[];
double a[][],ans,x[],w[M];
void gauss()
{
for(int i=;i<n;i++)
{
int k=i;
for(int j=i+;j<n;j++)
if(fabs(a[j][i])>fabs(a[k][i]))k=j;//fabs
if(k!=i)
for(int l=i;l<=n+;l++)swap(a[k][l],a[i][l]);
for(int l=i+;l<n;l++)
{
double r=a[l][i]/a[i][i];//不是k!!!
for(int t=i;t<=n+;t++)
a[l][t]-=r*a[i][t];
}
}
x[n]=;//!!!
for(int i=n-;i;i--)
{
for(int j=i+;j<n;j++)a[i][n+]-=a[i][j]*x[j];
x[i]=a[i][n+]/a[i][i];
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&u[i],&v[i]);
d[u[i]]++;d[v[i]]++;
}
for(int i=;i<=m;i++)
{
a[u[i]][v[i]]+=1.0/d[v[i]];
a[v[i]][u[i]]+=1.0/d[u[i]];
}
for(int i=;i<n;i++)a[i][i]=-;
a[][n+]=-;
gauss();
// for(int i=1;i<=n;i++)
// printf("x[%d]=%.3lf\n",i,x[i]);
for(int i=;i<=m;i++)
w[i]=x[u[i]]/d[u[i]]+x[v[i]]/d[v[i]];
sort(w+,w+m+);
for(int i=;i<=m;i++)
ans+=(m-i+)*w[i];
printf("%.3lf",ans);
return ;
}

bzoj3143游走——期望+高斯消元的更多相关文章

  1. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  2. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  3. [HNOI2013]游走 期望+高斯消元

    纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数, ...

  4. 【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元

    如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #inclu ...

  5. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

  6. BZOJ3143 [Hnoi2013]游走 【高斯消元】

    题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...

  7. [luogu3232 HNOI2013] 游走 (高斯消元 期望)

    传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...

  8. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

  9. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

随机推荐

  1. Java 一个?格式的解决

    用Java 出现了这样的一个问题?好几天都没解决掉 然后最近一直找资料 截个图: 本来格式中时没有这个?号的,代码里面用GBK和utf-8都不能解决. 即使我加了 Str.trim(Str)去除 字符 ...

  2. Annotation基本概念,作用以及举例说明。

    Annotation即注解,是Jav5新特征,Annotatio提供一些本来不属于程序的数据,用来将任何的信息或元数据(metadata)与程序元素(类.方法.成员变量等)进行关联.为程序的元素(类. ...

  3. NIO与传统IO的区别(形象比喻)[转]

    传统的socket IO中,需要为每个连接创建一个线程,当并发的连接数量非常巨大时,线程所占用的栈内存和CPU线程切换的开销将非常巨大.使用NIO,不再需要为每个线程创建单独的线程,可以用一个含有限数 ...

  4. Coursera 机器学习Course Wiki Lecture Notes

    https://share.coursera.org/wiki/index.php/ML:Main 包含了每周的Lecture Notes,以便复习回顾的时候使用.

  5. CVE-2014-4114 和 CVE-2014-3566

     这两天关注安全的人员都会特别留意这两个新披露的漏洞:CVE-2014-4114 和 CVE-2014-3566.以下我们就针对这两个漏洞最一些简要说明. CVE-2014-4114------- ...

  6. java开始到熟悉60

    本次主题:多维数组 1,多维数组的初始话有三种:默认初始化.静态初始化.动态初始化. 这里只讲解静态初始化: 这里以二位数组为例,实际应用中,一维用得最多,二维次之,三维以及三维以上几乎很少使用,而且 ...

  7. 不是技术牛人,如何拿到国内IT巨头的Offer--转

    http://blog.csdn.net/lsldd/article/details/13506263 不久前,byvoid面阿里星计划的面试结果截图泄漏,引起无数IT屌丝的羡慕敬仰.看看这些牛人,N ...

  8. VB.net版机房收费系统——结账功能实现(调错与优化)

    调错部分 上一篇博客<VB.net版机房收费系统--结账功能实现(代码部分>说的是结账功能的实现,亮出了代码.是在为这篇博客做铺垫.尽管结账功能代码是借鉴的巨人的博客.可是自己比着葫芦画瓢 ...

  9. Linux编程---进程通信

    Linux的通信方式主要有分类有以下几种: -匿名管道和FIFO有名管道 -消息队列,信号量和共享存储 -套接字 对于套接字的进程通信,我就留在套接字的文章中再写了. 一.管道 管道是最古老的进程通信 ...

  10. 常用DOS下MSC指令

    xp:copy C:\WINDOWS\repair\*.* 到 c:\windows\system32\config 2k: copy C:\winnt\repair\*.* 到 c:\winnt\s ...