【题目分析】

数据范围有些大。

然后遍求欧拉函数,遍求和就好了,注意取模。

【代码】

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 100005
#define inf 0x3f3f3f3f int n,p,x,sum;
int ispr[maxn],pr[maxn],top=0; void init()
{
F(i,2,maxn-1)
if (!ispr[i])
{
pr[++top]=i;
F(j,2,inf)
{
if (j*i>=maxn) break;
ispr[j*i]=1;
}
}
} int qpow(int a,int b)
{
a%=p;
int ret=1;
while (b)
{
if (b&1) (ret*=a)%=p;
(a*=a)%=p;
b>>=1;
}
return ret;
} int phi(int n)
{
int ret=n;
for (int i=1;pr[i]*pr[i]<=n&&i<=top;++i)
if (n%pr[i]==0)
{
ret=ret-ret/pr[i];
while (n%pr[i]==0) n/=pr[i];
}
if (n>1) ret=ret-ret/n;
return ret%p;
} int main()
{
init();
// F(i,1,top) printf("%d ",pr[i]); printf("\n");
scanf("%d",&x);
while (x--)
{
sum=0;
scanf("%d%d",&n,&p);
for (int i=1;i*i<=n;++i)
{
if (n%i==0)
{
sum=(sum+(qpow(n,i-1)*phi(n/i))%p)%p;
if (i*i!=n) sum=(sum+(qpow(n,n/i-1)*phi(i))%p)%p;
}
}
printf("%d\n",sum);
}
}

  

POJ 2154 Color ——Burnside引理的更多相关文章

  1. 组合数学 - 波利亚定理 --- poj : 2154 Color

    Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7873   Accepted: 2565 Description ...

  2. poj 2154 Color——带优化的置换

    题目:http://poj.org/problem?id=2154 置换的第二道题! 需要优化!式子是ans=∑n^gcd(i,n)/n (i∈1~n),可以枚举gcd=g,则有phi( n/g )个 ...

  3. poj 2154 Color < 组合数学+数论>

    链接:http://poj.org/problem?id=2154 题意:给出两个整数 N 和 P,表示 N 个珠子,N种颜色,要求不同的项链数, 结果 %p ~ 思路: 利用polya定理解~定理内 ...

  4. [ACM] POJ 2154 Color (Polya计数优化,欧拉函数)

    Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7630   Accepted: 2507 Description ...

  5. poj 2154 Color(polya计数 + 欧拉函数优化)

    http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...

  6. poj 2154 Color

    这是道标准的数论优化的polya题.卡时卡的很紧,需要用int才能过.程序中一定要注意控制不爆int!!!我因为爆intWA了好久=_=…… 题目简洁明了,就是求 sigma n^gcd(i,n):但 ...

  7. POJ 2154 Color [Polya 数论]

    和上题一样,只考虑旋转等价,只不过颜色和珠子$1e9$ 一样的式子 $\sum\limits_{i=1}^n m^{gcd(i,n)}$ 然后按$gcd$分类,枚举$n$的约数 如果这个也化不出来我莫 ...

  8. POJ 2154 color (polya + 欧拉优化)

    Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). You ...

  9. poj 2154 Color 欧拉函数优化的ploya计数

    枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...

随机推荐

  1. uvm_factory——我们的工厂(三)

    现在让我们回过头来想想factory 是用来干什么,它做了什么? fantory就是生产uvm_object 和 uvm_component.用factory 生产和用SV直接new有什么区别了? f ...

  2. apache下设置域名多站点访问及禁止apache访问80端口

    apache下设置域名多站点访问 当前系统:macOS High Sierra 域名访问配置指定端口后,不同域名只能配置不同的端口 apache配置目录: sudo vim /etc/apache2/ ...

  3. VC操作WORD文档总结

    一.写在开头 最近研究word文档的解析技术,我本身是VC的忠实用户,看到C#里面操作WORD这么舒服,同时也看到单位有一些需求,就想尝试一下,结果没想到里面的技术点真不少,同时网络上的共享资料很多, ...

  4. 洛谷 P1996 约瑟夫问题

    题目背景 约瑟夫是一个无聊的人!!! 题目描述 n个人(n<=100)围成一圈,从第一个人开始报数,数到m的人出列,再由下一个人重新从1开始报数,数到m的人再出圈,……依次类推,直到所有的人都出 ...

  5. office word excel等图标显示异常

    1.查看注册表:查看参数对应的路径被删除,计算机搜索新的文件路径更改路径即可.以此类推~ 计算机\HKEY_CLASSES_ROOT\Excel.Sheet.12\DefaultIcon 正常exce ...

  6. springmvc+maven搭建web项目

    1.创建一个maven project 为spring1 2.进行项目的配置:默认的java 1.5 在properties中选择project facts项目进行配置,反选web之后修改java环境 ...

  7. iOS5 and iOS6都只支持横屏的方法

    If your app uses a UINavigationController, then you should subclass it and set the class in IB. You ...

  8. gcc, g++ - GNU 工程的 C 和 C++ 编译器 (egcs-1.1.2)

    总览 (SYNOPSIS) gcc [ option | filename ]... g++ [ option | filename ]... 警告 (WARNING) 本手册页 内容 摘自 GNU ...

  9. jquery插件serializeFormToObject

    $.fn.serializeObject = function() { var o = {}; var a = this.serializeArray(); $.each(a, function() ...

  10. java中regex参考

    在Sun的Java JDK 1.40版本中,Java自带了支持正则表达式的包,本文就抛砖引玉地介绍了如何使用java.util.regex包. 可粗略估计一下,除了偶尔用Linux的外,其他Linu ...