E. Arthur and Brackets
time limit per test

2 seconds

memory limit per test

128 megabytes

input

standard input

output

standard output

Notice that the memory limit is non-standard.

Recently Arthur and Sasha have studied correct bracket sequences. Arthur understood this topic perfectly and become so amazed about correct bracket sequences, so he even got himself a favorite correct bracket sequence of length 2n. Unlike Arthur, Sasha understood the topic very badly, and broke Arthur's favorite correct bracket sequence just to spite him.

All Arthur remembers about his favorite sequence is for each opening parenthesis ('(') the approximate distance to the corresponding closing one (')'). For the i-th opening bracket he remembers the segment [li, ri], containing the distance to the corresponding closing bracket.

Formally speaking, for the i-th opening bracket (in order from left to right) we know that the difference of its position and the position of the corresponding closing bracket belongs to the segment [li, ri].

Help Arthur restore his favorite correct bracket sequence!

Input

The first line contains integer n (1 ≤ n ≤ 600), the number of opening brackets in Arthur's favorite correct bracket sequence.

Next n lines contain numbers li and ri (1 ≤ li ≤ ri < 2n), representing the segment where lies the distance from the i-th opening bracket and the corresponding closing one.

The descriptions of the segments are given in the order in which the opening brackets occur in Arthur's favorite sequence if we list them from left to right.

Output

If it is possible to restore the correct bracket sequence by the given data, print any possible choice.

If Arthur got something wrong, and there are no sequences corresponding to the given information, print a single line "IMPOSSIBLE" (without the quotes).

Sample test(s)
Input
4
1 1
1 1
1 1
1 1
Output
()()()()
Input
3
5 5
3 3
1 1
Output
((()))
Input
3
5 5
3 3
2 2
Output
IMPOSSIBLE
Input
3
2 3
1 4
1 4
Output
(())()

一把一把的泪啊,,,看错题搞了很久,,,然后dp时输出串也搞了很久,,,原来水水的贪心就能过,,,泪流满面,

转一下贪心的思路: http://www.cnblogs.com/wuyuewoniu/p/4256013.html

CF上给这道题打了dp和greedy两个标签,应该是两种做法都可以吧。下面说贪心的做法。

题意:

有一些配好对的括号,现在已知第i对括号,左右括号的距离在[Li, Ri]区间中。按照左括号出现的顺序编号。

输出原括号序列。

分析:

因为括号是以栈的形式配对的,所以我们将这些区间也以栈的形式存储。

假设第i对括号的左括号在位置p,则右括号只能在[p+Li, p+Ri]这个区间中。

每放一个左括号,就将右括号对应的区间入栈。

贪心的办法是,如果当前位置位于栈顶区间的范围内,则尽早入栈。

贪心的理由是:因为早点使栈顶的括号配对,就有更大的机会使栈顶的第二队括号配上对。

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<string> #define N 1205
#define M 105
#define mod 1000000007
//#define p 10000007
#define mod2 1000000000
#define ll long long
#define LL long long
#define eps 1e-6
#define inf 100000000
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; int n;
char s[N];
int l[N],r[N];
int flag;
int dp[][]; void ini()
{
memset(dp,-,sizeof(dp));
int i;
for(i=;i<=n;i++){
scanf("%d%d",&l[i],&r[i]);
}
flag=;
s[*n]='\0';
} int fun(int now,int tot,int st,int en)
{
// printf("now=%d tot=%d st=%d en=%d\n",now,tot,st,en);
int f1,f2;
int i;
int tot1,tot2;
int ss,ee;
if(dp[now][tot]!=-){
return dp[now][tot];
}
if(tot==){
if(l[now]==){
dp[now][tot]=;
return ;
}
else{
dp[now][tot]=;
return ;
}
}
ss=l[now];ee=r[now];
if(ss%==) ss++;
if(ee%==) ee--;
for(i=ss;i<=min(ee,en-st);i+=){
tot1=(i+)/;
tot2=tot-tot1;
//printf(" i=%d tot1=%d tot2=%d\n",i,tot1,tot2);
if(tot2<) break;
if(tot1==){
f2=fun(now+,tot2,st+,en);
if(f2>=){
dp[now][tot]=;
return ;
}
}
else if(tot1==tot){
f1=fun(now+,tot1-,st+,en-);
if(f1>=){
dp[now][tot]=i;
return ;
}
}
else{
f1=fun(now+,tot1-,st+,st+i-);
f2=fun(now+tot1,tot2,st+i+,en);
if(f1>= && f2>=){
dp[now][tot]=i;
return ;
}
}
}
dp[now][tot]=;
return ;
} void solve()
{
flag=fun(,n,,*n);
} void print(int now,int tot)
{
int tot1,tot2;
tot1=(dp[now][tot]+)/;
tot2=tot-tot1;
printf("(");
if(tot1!=)
print(now+,tot1-);
printf(")");
if(tot1!=tot)
print(now+tot1,tot2); } void out()
{
/* int i,j;
printf("flag=%d\n",flag);
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
printf(" i=%d j=%d dp=%d\n",i,j,dp[i][j]);
}
}*/
if(flag==){
printf("IMPOSSIBLE\n");
}
else{
print(,n);
printf("\n");
//printf("%s\n",s);
}
} int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
//scanf("%d",&T);
//for(int ccnt=1;ccnt<=T;ccnt++)
//while(T--)
while(scanf("%d",&n)!=EOF)
{
ini();
solve();
out();
}
return ;
}

Codeforces Round #288 (Div. 2) E. Arthur and Brackets [dp 贪心]的更多相关文章

  1. Codeforces Round #288 (Div. 2) E. Arthur and Brackets 贪心

    E. Arthur and Brackets time limit per test 2 seconds memory limit per test 128 megabytes input stand ...

  2. Codeforces Round #288 (Div. 2) E. Arthur and Brackets

    题目链接:http://codeforces.com/contest/508/problem/E 输入一个n,表示有这么多对括号,然后有n行,每行输入一个区间,第i行的区间表示从前往后第i对括号的左括 ...

  3. Codeforces Round #288 (Div. 2) C. Anya and Ghosts 模拟 贪心

    C. Anya and Ghosts time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #353 (Div. 2) E. Trains and Statistic dp 贪心

    E. Trains and Statistic 题目连接: http://www.codeforces.com/contest/675/problem/E Description Vasya comm ...

  5. 贪心+模拟 Codeforces Round #288 (Div. 2) C. Anya and Ghosts

    题目传送门 /* 贪心 + 模拟:首先,如果蜡烛的燃烧时间小于最少需要点燃的蜡烛数一定是-1(蜡烛是1秒点一支), num[g[i]]记录每个鬼访问时已点燃的蜡烛数,若不够,tmp为还需要的蜡烛数, ...

  6. 贪心 Codeforces Round #288 (Div. 2) B. Anton and currency you all know

    题目传送门 /* 题意:从前面找一个数字和末尾数字调换使得变成偶数且为最大 贪心:考虑两种情况:1. 有偶数且比末尾数字大(flag标记):2. 有偶数但都比末尾数字小(x位置标记) 仿照别人写的,再 ...

  7. Codeforces Round #297 (Div. 2)D. Arthur and Walls 暴力搜索

    Codeforces Round #297 (Div. 2)D. Arthur and Walls Time Limit: 2 Sec  Memory Limit: 512 MBSubmit: xxx ...

  8. BFS Codeforces Round #297 (Div. 2) D. Arthur and Walls

    题目传送门 /* 题意:问最少替换'*'为'.',使得'.'连通的都是矩形 BFS:搜索想法很奇妙,先把'.'的入队,然后对于每个'.'八个方向寻找 在2*2的方格里,若只有一个是'*',那么它一定要 ...

  9. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

随机推荐

  1. 玄学C语言之scanf,printf

    #include <bits/stdc++.h> using namespace std; int main() { int a,c,d; ]; scanf("%d." ...

  2. Cayley凯莱定理——一一对应

    定理 过$n$个有标志顶点的树的数目等于$n^{n-2}$. 此定理说明用$n-1$条边将$n$个已知的顶点连接起来的连通图的个数是$n^{n-1}$.也可以这样理解,将n个城市连接起来的树状网络有$ ...

  3. 结合浅层高层特征的paper总结

    1.ION:在conv3.conv4.conv5和context features上分别进行roi_pooling,在channel那一维进行concat 2.Hypernet:在较浅层max_poo ...

  4. HTTP协议重定向

    HTTP重定向:服务器无法处理浏览器发送过来的请求(request),服务器告诉浏览器跳转到可以处理请求的url上.(浏览器会自动访问该URL地址,以至于用户无法分辨是否重定向了.) 重定向的返回码3 ...

  5. Hibernate的二级缓存使用(spring使用)

    (一)Hibernate的二级缓存策略的一般过程如下: 1) 条件查询的时候,总是发出一条select * from table_name where …. (选择所有字段)这样的SQL语句查询数据库 ...

  6. 【线段树 细节题】bzoj1067: [SCOI2007]降雨量

    主要还是细节分析:线段树作为工具 Description 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小 ...

  7. 三段式fsm

    1.状态转移的always中CS,同步ouput的always中NS. 2.3段fsm vs 2段fsm:output逻辑是组合逻辑和同步时序逻辑(消除里不稳的和毛刺). 3.3段fsm vs 1段f ...

  8. (转)ios应用导航模型

    Eko - MoboCentre 本文将介绍iPhone的导航风格,同时,也一并了解能够组织好应用内容和工具的导航方式.对于一个应用来说,最基础的操作就是基于页面间简单的移动,每张页面都完成一个任务或 ...

  9. H.264分层结构与码流结构

    H.264分层结构 H.264编码器输出的Bit流中,每个Bit都隶属于某个句法元素.句法元素被组织成有层次的结构,分别描述各个层次的信息. 在H.264 中,句法元素共被组织成  序列.图像.片.宏 ...

  10. centos 安装 yum apt

    以下地址 http://download.csdn.NET/detail/mimi00x/8081263 执行安装命令 rpm -i rpmforge-release-0.5.3-1.el7.rf.x ...