Problem

bzoj

题目大意:给定多个标准串和一个文本串,全部为01串,如果一个串长度不少于\(L\)且是任意一个标准串的子串,那么它是“熟悉”的。对于文本串\(A\),把\(A\)分割成若干段子串,其中“熟悉”的子串的长度总和不少于\(A\)总长度的\(90\%\),那么该\(L\)是可行的。求可行的\(L\)最大值

Solution

前置技能:二分答案、SAM、Dp、单调队列

字符串长在L上下对答案贡献是断崖式的,按套路二分L

再根据对序列分段问题的直觉可以得到dp方程:\(f[i]=max(f[i-1],f[j]+i-j),j\leq i-L且s[j…i]是熟悉的\)

这样复杂度加上各种优化是\(O(n^2)\)到\(O(n^3)\)不等的

考虑到对于\(i\),合法的\(j\)一定是连续的,可以用后缀自动机预处理出每一个字符\(i\)向左最长的熟悉的串位置\(orz[i]\)

dp方程为:\(f[i]=\max(f[i-1],f[j]+i-j),j\in[i-orz[i],i-L]\)

发现dp方程可以用单调队列优化:队列里存\(f[i]-i\)即可

Code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define rg register const int N=2001000;
int pre[N],stp[N],ch[N][2];
int f[N],q[N],orz[N];
int n,m,len,tot=1,lst=1,L,R;
char s[N]; inline void ins(int x){
int p=lst,np=++tot;
lst=np;stp[np]=stp[p]+1;
while(p&&!ch[p][x])ch[p][x]=np,p=pre[p];
if(!p)pre[np]=1;
else {
int q=ch[p][x];
if(stp[q]==stp[p]+1)pre[np]=q;
else {
int nq=++tot;stp[nq]=stp[p]+1;
//*ch[nq]=*ch[q];
ch[nq][0]=ch[q][0],ch[nq][1]=ch[q][1];
pre[nq]=pre[q];
pre[q]=pre[np]=nq;
while(ch[p][x]==q)ch[p][x]=nq,p=pre[p];
}
}return ;
} inline int check(int li){
int he(1),ta(0);
for(rg int i=1;i<=len;++i){
f[i]=f[i-1];
if(i<li)continue;
while(he<=ta&&f[q[ta]]-q[ta]<=f[i-li]-i+li)--ta;
q[++ta]=i-li;
while(he<=ta&&q[he]<i-orz[i])++he;
if(he<=ta)f[i]=max(f[i],f[q[he]]+i-q[he]);
}return f[len]*10>=len*9;
} void PRE(){
scanf("%s",s+1);
len=strlen(s+1);
L=0;R=len;
int nw(1),cnt(0);
for(rg int i=1;i<=len;++i){
int x=s[i]-'0';
if(ch[nw][x])++cnt,nw=ch[nw][x];
else {
while(nw&&!ch[nw][x])nw=pre[nw];
if(nw)cnt=stp[nw]+1,nw=ch[nw][x];
else nw=1,cnt=0;
}
orz[i]=cnt;
}return ;
} int main(){
scanf("%d%d",&n,&m);
while(m--){
scanf("%s",s);lst=1;
for(rg int i=0;s[i];++i)ins(s[i]-'0');
}
while(n--){
PRE();
while(L<R){
int mid(L+R+1>>1);
if(check(mid))L=mid;
else R=mid-1;
}
printf("%d\n",L);
}return 0;
}

题解-CTSC2012 熟悉的文章的更多相关文章

  1. P4022 [CTSC2012]熟悉的文章

    题目 P4022 [CTSC2012]熟悉的文章 题目大意:多个文本串,多个匹配串,我们求\(L\),\(L\)指(匹配串中\(≥L\)长度的子串出现在文本串才为"熟悉",使得匹配 ...

  2. [CTSC2012]熟悉的文章(后缀自动机+动态规划)

    题目描述 阿米巴是小强的好朋友. 在小强眼中,阿米巴是一个作文成绩很高的文艺青年.为了获取考试作文的真谛,小强向阿米巴求教.阿米巴给小强展示了几篇作文,小强觉得这些文章怎么看怎么觉得熟悉,仿佛是某些范 ...

  3. 【[CTSC2012]熟悉的文章】

    题目 好题啊 \(SAM\)+单调队列优化\(dp\) 首先这个\(L\)满足单调性真是非常显然我们可以直接二分 二分之后套一个\(dp\)就好了 设\(dp[i]\)表示到达\(i\)位置熟悉的文章 ...

  4. [BZOJ2806][CTSC2012]熟悉的文章(Cheat)

    bzoj luogu 题目描述 阿米巴是小强的好朋友. 在小强眼中,阿米巴是一个作文成绩很高的文艺青年.为了获取考试作文的真谛,小强向阿米巴求教.阿米巴给小强展示了几篇作文,小强觉得这些文章怎么看怎么 ...

  5. [CTSC2012]熟悉的文章 后缀自动机

    题面:洛谷 题解: 观察到L是可二分的,因此我们二分L,然后就只需要想办法判断这个L是否可行即可. 因为要尽量使L可行,因此我们需要求出对于给定L,这个串最多能匹配上多少字符. 如果我们可以对每个位置 ...

  6. CTSC2012 熟悉的文章

    传送门 首先很容易想到对于所有的模式串建出广义后缀自动机,之后对于我们每一个要检查的文本串,先在SAM上跑,计算出来每一个位置能匹配到的最远的位置是多少.(就是当前点减去匹配长度) 之后--考虑DP- ...

  7. Luogu4022 CTSC2012 熟悉的文章 广义SAM、二分答案、单调队列

    传送门 先将所有模板串扔进广义SAM.发现作文的\(L0\)具有单调性,即\(L0\)更小不会影响答案,所以二分答案. 假设当前二分的值为\(mid\),将当前的作文放到广义SAM上匹配. 设对于第\ ...

  8. [CTSC2012]熟悉的文章 (后缀自动机 单调队列)

    /* 首先答案显然是具有单调性的, 所以可以二分进行判断 然后当我们二分过后考虑dp来求最长匹配个数, 发现每个点能够转移的地点 肯定是一段区间, 然后这样就能够得到一个log^2算法 至于每个点的匹 ...

  9. Luogu-4022 [CTSC2012]熟悉的文章

    广义后缀自动机+DP 对于作文库建出广义后缀自动机,广义自动机就是在每次添加一个字符串之前把\(last=0\),然后正常添加就好了 对于每个询问串,预处理出每个位置\(i\)能向前匹配的最长长度\( ...

随机推荐

  1. 面向对象【林老师版】:__init__定制自己独有的特征(三)

    本节内容 1.是如何产生对象 2.实例化的步骤 3.类即类型 一.是如何产生对象? __init__方法用来为对象定制对象自己独有的特征 1.stu1=LuffyStudent()调用报错 1.代码 ...

  2. golang byte与rune区别

    先看代码 package main import ( "fmt" ) func main() { var a = "hello world" var b = & ...

  3. 2016vijos 1-3 兔子的晚会(生成函数+倍增FWT)

    求出序列的生成函数后,倍增FWT #include<cstdio> using namespace std; #define N 2048 ; int inv; ]; int Pow(in ...

  4. PHP7 学习笔记(十一)使用phpstudy快速配置一个虚拟主机

    说明:为了windows本地开发php方便,这里推荐使用PHP集成环境phpstudy. 目的:使用域名访问项目(tinywan.test) 1.官网:http://www.phpstudy.net ...

  5. UDF简记

    摘要: 1.开发UDF 2.开发UDAF 3.开发UDTF 4.部署与测试 5.一个简单的实例 内容:1.开发UDF 函数类需要继承org.apache.hadoop.hive.ql.UDF 实现ev ...

  6. Javaweb学习笔记——(二十二)——————文件上传、下载、Javamail

    文件上传概述      1.文件上传的作用          例如网络硬盘,就是用来上传下载文件的.          在网络浏览器中,时常需要上传照片 2.文件上传对页面的要求          上 ...

  7. Javaweb学习笔记——(十八)——————事务、DBCP、C3P0、装饰者模式

    事务     什么是事务?         转账:             1.给张三账户减1000元             2.给李四账户加1000元 当给张三账户减1000元之后,抛出了异常,这 ...

  8. PDO和MySQLi区别与选择?

    当用PHP访问数据库时,除了PHP自带的数据库驱动,我们一般还有两种比较好的选择:PDO和MySQLi.在实际开发过程中要决定选择哪一种首先要对二者有一个比较全面的了解.本文就针对他们的不同点进行分析 ...

  9. 20155324 《Java程序设计》实验五 网络编程与安全

    20155324 <Java程序设计>实验五 网络编程与安全 实验内容 任务一 编写MyBC.java实现中缀表达式转后缀表达式的功能 编写MyDC.java实现从上面功能中获取的表达式中 ...

  10. tensorflow faster rann

    github 上大神的代码 https://github.com/endernewton/tf-faster-rcnn.git 在自己跑的过程中的问题: 1. 数据集的问题: 作者实现了 voc,co ...