看了好多篇题解才看懂的题,我实在太菜了...

首先根据一个我不知道的算法,可以证明在没有加入新的边的时候,原图的所有生成树的方案数就是所有点(除1以外)的度之积

那么在新加入这条边之后,我们仍然可以这样计算,但是会产生一种问题:就是会出现环!

所以我们需要利用一些容斥,把不合法的情况去掉

接下来我们考虑如何算出不合法的情况

由于原图是一个有向无环图,所以在原图中怎么选都不会出现环,所以多的一条边一定在环内!

那么如果出现了环,一定是从多的边的终点到起点的一条路径

所以我们只需要找出终点到起点的路径数量即可

那么就进行一个拓扑排序求一下即可

考虑一下怎么求:

首先记状态:dp[i]表示从终点到i的路径数量

然后考虑初值:dp[ed]=初始方案/终点入度

(关于这里为什么要除掉一个入度:因为原来的初始方案中是包含这一点的入度的,所以要除掉这个入度)

最后ans去掉这一部分即可

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define mode 1000000007
#define ll long long
using namespace std;
struct Edge
{
int next;
int to;
}edge[200005];
int n,m,st,ed;
ll inr[100005];
ll rinr[100005];
int head[100005];
ll inv[300005];
int cnt=1;
ll ans=1;
ll dp[100005];
void init()
{
inv[0]=inv[1]=1;
for(int i=2;i<=300000;i++)
{
inv[i]=(mode-mode/i)*inv[mode%i]%mode;
}
memset(head,-1,sizeof(head));
cnt=1;
}
void add(int l,int r)
{
edge[cnt].next=head[l];
edge[cnt].to=r;
head[l]=cnt++;
}
ll bfs()
{
dp[ed]=ans;
queue <int> M;
for(int i=1;i<=n;i++)
{
if(!inr[i])
{
M.push(i);
}
}
while(!M.empty())
{
int u=M.front();
M.pop();
dp[u]*=inv[rinr[u]];
dp[u]%=mode;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int to=edge[i].to;
dp[to]+=dp[u];
dp[to]%=mode;
inr[to]--;
if(!inr[to])
{
M.push(to);
}
}
}
return ((ans-dp[st])%mode+mode)%mode;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&st,&ed);
init();
rinr[ed]=1;
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
inr[y]++;
rinr[y]++;
}
for(int i=2;i<=n;i++)
{
ans*=rinr[i];
ans%=mode;
}
if(ed==1)
{
printf("%lld\n",ans);
}else
{
printf("%lld\n",bfs());
}
return 0;
}

bzoj 4011的更多相关文章

  1. BZOJ 4011: [HNOI2015]落忆枫音( dp )

    DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...

  2. BZOJ 4011 HNOI2015 落忆枫音 DAG上的dp(实际上重点在于分析)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4011 题意概述:给出一张N点的DAG(从1可以到达所有的点),点1的入度为0.现在加一条原 ...

  3. BZOJ 4011 HNOI2015 落忆枫音

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=4011 题目很长,写得也很有诗意与浪漫色彩,让我们不禁感叹出题人是一个多么英俊潇洒的人. 所 ...

  4. BZOJ 4011 落忆枫音

    几个重点: 1.从每个点任选一条入边,都可以成为一个树形图. 2.于是考虑所有答案减去有环的答案. 3.将要求的东西形式化表示出来,然后发现可以直接dp.. 好厉害啊.. #include<io ...

  5. BZOJ 4011 开店

    Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的想法当然非常好啦,但是她们也发现她们 ...

  6. BZOJ 4011 【HNOI2015】 落忆枫音

    题目链接:落忆枫音 以下内容参考PoPoQQQ大爷的博客 首先我们先来考虑一下如果没有新加入的那条边,答案怎么算. 由于这是一个\(DAG\),所以我们给每个点随便选择一条入边,最后一定会构成一个树形 ...

  7. BZOJ 4011: [HNOI2015]落忆枫音 计数 + 拓扑排序

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

  8. Week One

    2018.11.21: 1.[BZOJ 4868][SHOI 2017] 从后往前枚举最后位置即可,如果$A<B$,用尽可能多的$A$替换$B$操作 Tip:很大的$C$可能爆$longlong ...

  9. 【BZOJ】【4011】【HNOI2015】落忆枫音

    拓扑排序+DP 题解:http://blog.csdn.net/PoPoQQQ/article/details/45194103 http://www.cnblogs.com/mmlz/p/44487 ...

随机推荐

  1. GDI+学习---1.初识GDI+

    ---恢复内容开始--- GDI+: GDI+由一组C++类实现,是对于GDI的继承,GDI+不仅优化了大部分GDI性能而且提供了更多特性.允许应用程序开发者将信息显示在显示器或者打印机上,而无需考虑 ...

  2. 人人中的 shiro权限管理 简单说明

    maven  shiro包的引用路径 :C:\Users\yanfazhongxin\.m2\repository\org\apache\shiro\shiro-core\1.3.2\shiro-co ...

  3. hydra 使用总结

    参考链接: http://blog.csdn.net/MarshalEagle/article/details/51896083 https://www.waitalone.cn/hydra-v8-w ...

  4. 创建 Pull Request

    Pull Request 是开发者使用 GitHub 进行协作的利器.这个功能为用户提供了友好的页面,让提议的更改在并入官方项目之前,可以得到充分的讨论. 最简单地来说,Pull Request 是一 ...

  5. Palindromic Numbers LightOJ - 1205

    题目大意: 求区间内的回文数个数 题目思路: 数位dp,先枚举前一半数字,然后填上相应的后一半数字. #include<cstdio> #include<cstring> #i ...

  6. OGG初始加载过程概述

    您可以使用Oracle GoldenGate来: 执行独立的批量加载以填充数据库表以进行迁移或其他用途. 将数据作为初始同步运行的一部分加载到数据库表中,以准备与Oracle GoldenGate进行 ...

  7. CF1108F MST Unification

    题目地址:CF1108F MST Unification 最小生成树kruskal算法的应用 只需要在算法上改一点点 当扫描到权值为 \(val\) 的边时,我们将所有权值为 \(val\) 的边分为 ...

  8. ActiveMQ使用

    一.Windows安装ActiveMQ 1.下载解压 2.启动服务 二.Linux安装ActiveMQ 1.下载解压 2.启动访问 三.队列模式 1.创建maven项目 2.生产者 3.消费者 四.主 ...

  9. 1.Python_字符串_常用办法总结

    明确:对字符串的操作方法都不会改变原来字符串的值. 1.去掉空格和特殊符号 name.strip() 去掉空格和换行符 name.strip("xx") 去掉某个字符串 name. ...

  10. NandFlash和iNand【转】

    转自:https://www.cnblogs.com/PengfeiSong/p/6380447.html nand 1.nand的单元组织:block与page(大页Nand与小页Nand)(1)N ...