51nod1079 poj2891 中国剩余定理与其扩展
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1079
收起
输入
第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)
第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)
输出
输出符合条件的最小的K。数据中所有K均小于10^9。
输入样例
3
2 1
3 2
5 3
输出样例
23 解题思路:中国剩余定理模板题
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll n,a[],m[];
//ax+by=gcd(a,b);
//x=y1,y=x1-a/b*y1;
void exgcd(ll a,ll b,ll &x,ll &y,ll &c)
{
if(!b){
x=; y=; c=a;
return;
}
exgcd(b,a%b,y,x,c);
y-=a/b*x;
}
ll China()
{
ll x,y,c,lcm=,ans=;
for(int i=;i<=n;i++)
lcm*=m[i];
for(int i=;i<=n;i++)
{
exgcd(lcm/m[i],m[i],x,y,c);
x=(x%m[i]+m[i])%m[i];
ans=(ans+x*lcm/m[i]*a[i])%lcm;
}
return (ans+lcm)%lcm;
}
int main()
{
while(cin>>n){
for(int i=;i<=n;i++)cin>>m[i]>>a[i];
cout<<China()<<endl;
}
return ;
}
题目链接:http://poj.org/problem?id=2891
给定 2n2n 个正整数 a_1,a_2,\cdots ,a_na1,a2,⋯,an 和 m_1,m_2,\cdots ,m_nm1,m2,⋯,mn,求一个最小的正整数 xx,满足 \forall i\in[1,n],x\equiv a_i\ (\bmod m_i\ )∀i∈[1,n],x≡ai (modmi ),或者给出无解。
输入格式
多组数据。
每组数据第一行一个整数 nn;
接下来 nn 行,每行两个整数 m_i,a_imi,ai。
输出格式
对于每组数据,若无解,输出 -1−1;否则输出一个非负整数,若有多解,输出最小的满足条件的答案。
样例
样例输入
2
8 7
11 9
样例输出
31
数据范围与提示
对于全部数据,所有的输入都是非负的,并且可以用 6464 位有符号整数表示。保证 1\le n\le 10^5,m_i\gt a_i1≤n≤105,mi>ai。
解题思路:这种是一般情形,需要用扩展中国剩余定理。
代码:
#include<iostream>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll n,a[],m[];
//ax+by=gcd(a,b);
//x=y1,y=x1-a/b*y1;
void exgcd(ll a,ll b,ll &x,ll &y,ll &c)
{
if(!b){
x=; y=; c=a;
return;
}
exgcd(b,a%b,y,x,c);
y-=a/b*x;
}
ll inv(ll a,ll b)
{
ll x,y,c;
exgcd(a,b,x,y,c);
x=(x%(b/c)+(b/c))%(b/c);
return x;
}
ll exCRT()
{
for(int i=;i<=n;i++)
{
ll m1=m[i-],m2=m[i],a1=a[i-],a2=a[i],c=gcd(m1,m2);
if((a2-a1)%c!=)return -;
m[i]=m1*m2/c;
a[i]=(inv(m1/c,m2/c)*(a2-a1)/c)%(m2/c)*m1+a1;
a[i]=(a[i]%m[i]+m[i])%m[i];
}
return a[n];
}
int main()
{
while(cin>>n){
for(int i=;i<=n;i++)cin>>m[i]>>a[i];
cout<<exCRT()<<endl;
}
return ;
}
51nod1079 poj2891 中国剩余定理与其扩展的更多相关文章
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- CRT&EXCRT 中国剩余定理及其扩展
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条 ...
- 扩展中国剩余定理(扩展CRT)详解
今天在$xsy$上翻题翻到了一道扩展CRT的题,就顺便重温了下(扩展CRT模板也在里面) 中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$. 正常的$CRT$ ...
- HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法
地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others) M ...
- LOJ2721 [NOI2018] 屠龙勇士 【扩展中国剩余定理】
好久没写了,写一篇凑个数. 题目分析: 这题不难想,讲一下中国剩余定理怎么扩展. 考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pm ...
- 学习笔记 - 中国剩余定理&扩展中国剩余定理
中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)
0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...
- [poj2891]Strange Way to Express Integers(扩展中国剩余定理)
题意:求解一般模线性同余方程组 解题关键:扩展中国剩余定理求解.两两求解. $\left\{ {\begin{array}{*{20}{l}}{x = {r_1}\,\bmod \,{m_1}}\\{ ...
随机推荐
- linux 服务器名 访问 shh免密码登录
以根用户登录,或者登录后切换到根用户,然后在提示符下输入hostname命令,可以看出当前系统的主机名为localhost.localdomain. 更改/etc/sysconfig下的netwo ...
- CMake--静态库与动态库构建
小结内容 建立一个静态库和动态库,提供 HelloFunc 函数供其他程序编程使用, HelloFunc 向终端输出Hello World 字符串. 安装头文件与共享库. 1.代码与CMakeList ...
- centOS7防火墙关闭失败问题
CentOS7命令: 查看防火墙状态:firewall-cmd --state 关闭防火墙:systemctl stop firewalld.service 禁止开机自启:systemctl disa ...
- 使用cmd命令删除文件夹下所有文件
rmdir 删除整个目录 好比说我要删除 222 这个目录下的所有目录和档案,这语法就是: rmdir /s/q 222 其中: /s 是代表删除所有子目录跟其中的档案. /q 是不要它在删除档案或目 ...
- sonar结合jenkins
一.下载jenkins插件 二.系统设置 三.获取token值 4.调整 Jenkins 构建设置
- Prism框架研究(二)
首先在介绍本节内容之前,首先来看看官方文档来如何描述Prism 应用的初始化吧!A Prism application requires registration and configuration ...
- ABP 番外篇-菜单
public class LearningMpaAbpNavigationProvider : NavigationProvider { public override void SetNavigat ...
- React 学习(四) ---- 生命周期函数
现在我们能修改状态,页面可以进行交互了,但是还有一种状态改变没有解决,那就是倒计时效果,时间一直在变化,组件状态也一直在改变,但我们什么都没有做,如果要实现这样的效果,需要怎么处理? 我们都知道,改变 ...
- U盘快速启动热键
各个品牌电脑U盘快速启动热键如下:
- Codeforces 768B B. Code For 1
参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6423483.html B. Code For 1 time limit per test:2 se ...