[BJOI2012]最多的方案(记忆化搜索)
第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数。现在给一个正整数N,它可以写成一些斐波那契数的和的形式。如果我们要求不同的方案中不能有相同的斐波那契数,那么对一个N最多可以写出多少种方案呢?
题意是说数列中不能出现相同的数。
显然要记忆化搜索。
直接搜会T,我们枚举下一个数填什么是要从大到小枚举,可以使效率有指数级的提升。
这是枚举上界,枚举下界可以用前缀和+二分来优化枚举复杂度。
加了这两个优化后代码跑的飞快。
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<map>
#define mm make_pair
using namespace std;
typedef long long ll;
ll dp[],sum[];
map<pair<ll,int>,ll>mem;
ll n;
ll dfs(ll x,int xian){
if(!x)return ;
if(mem[mm(x,xian)])return mem[mm(x,xian)];
ll ans=;
int p=lower_bound(sum+,sum++,x)-sum;
for(int i=p;i<=xian;++i)if(dp[i]<=x)ans+=dfs(x-dp[i],i-);else break;
return mem[mm(x,xian)]=ans;
}
int main(){
scanf("%lld",&n);dp[]=dp[]=;
for(int i=;i<=;++i)dp[i]=dp[i-]+dp[i-];
for(int i=;i<=;++i)sum[i]=sum[i-]+dp[i];
printf("%lld",dfs(n,));
return ;
}
[BJOI2012]最多的方案(记忆化搜索)的更多相关文章
- 洛谷P4133 [BJOI2012]最多的方案(记忆化搜索)
题意 题目链接 求出把$n$分解为斐波那契数的方案数,方案两两不同的定义是分解出来的数不完全相同 Sol 这种题,直接爆搜啊... 打表后不难发现$<=1e18$的fib数只有88个 最先想到的 ...
- BZOJ 1079: [SCOI2008]着色方案 记忆化搜索
1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- SCOI2008着色方案(记忆化搜索)
有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i 种颜色的油漆足够涂ci 个木块.所有油漆刚好足够涂满所有木块,即 c1+c2+...+ck=n.相邻两个木块涂相同色显得很难 ...
- BZOJ1079: [SCOI2008]着色方案 (记忆化搜索)
题意:有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木块涂相同色显得很 ...
- bzoj1079 着色方案 记忆化搜索(dp)
题目传送门 题目大意: 有k种颜色,每个颜色ci可以涂个格子,要求相邻格子颜色不能一样,求方案数.ci<=5,k<=15. 思路: 题目里最重要的限制条件是相邻格子颜色不能相同,也就是当前 ...
- 【P2476】着色方案(记忆化搜索+特殊的DP数组)
这个题代码难度几乎为0,然而思维难度对于蒟蒻来说简直是突破天际啊!首先我思考的是这个油漆的种类只有15种,是不是可以像一道叫做8数码难题的东西暴力15维数组呢..计算发现不可以....空间会直接让你学 ...
- 【洛谷】3953:逛公园【反向最短路】【记忆化搜索(DP)统计方案】
P3953 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条 ...
- HDU 1208 Pascal's Travels 经典 跳格子的方案数 (dp或者记忆化搜索)
Pascal's Travels Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Su ...
- 路径方案数_mod_SPFA_记忆化搜索_C++
本文含有原创题,涉及版权利益问题,严禁转载,违者追究法律责任 本来是写个 DP 分分钟就 A 了,结果老师要我们写记忆化搜索(无奈脸) 算啦,随手一改又是一个标准的记忆化搜索(目测好像是记忆化搜索容易 ...
随机推荐
- SSH上传/下载本地文件到linux服务器
在linux下一般用scp这个命令来通过ssh传输文件. 1.从服务器上下载文件 scp username@servername:/path/filename /var/www/local_dir(本 ...
- asp.net core前后端分离
陆陆续续的看了两个礼拜的前端知识,把vue+vue-router+axios的知识撸了一遍,本来想加个element-ui来实现一下前后端分离,实施的时候却遇到了很多的坑.我本身不在一个软件开发公司上 ...
- Azure系列2.1.1 —— BlobContainerPermissions
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...
- SQL年月日格式化
Select CONVERT(varchar(100), GETDATE(), 23): 2006-05-16
- Gevent 性能和 gevent.loop 的运用和带来的思考
知乎自己在底层造了非常多的轮子,而且也在服务器部署方面和数据获取方面广泛使用 gevent 来提高并发获取数据的能力.现在开始我将结合实际使用与测试慢慢完善自己对 gevent 更全面的使用和扫盲. ...
- ES6 & Map & hashMap
ES6 & Map & hashMap 01 two-sum https://leetcode.com/submissions/detail/141732589/ hashMap ht ...
- Google浏览器解决编码乱码问题
新版google浏览器编码乱码没有设置的入口,怎么办呢?. 步骤一: 可以下载goole的插件,名为charset,下载后的文件名为Charset_v0.4.1 步骤二: google右上角-> ...
- LODOP 获取打印设计代码不带INIT初始化语句
前面的博文生成JS代码模版和文档式模版,生成的是带初始化语句的模版,如果想要打印多个,可以循环多个任务,什么是一个任务,可查看本博客相关博文:Lodop打印语句最基本结构介绍(什么是一个任务)一个任务 ...
- Eclipse配置C++时的三个关键环境变量
ECLIPSE下载很简单,然后装上MinGW,安装就完成了,关键是要配置三个环境变量 include——C:\MinGW\include lib——C:\MinGW\lib path——C:\MinG ...
- 实体类注解错误:Could not determine type for: java.util.List
今天配置实体类注解时,出现以下错误: Caused by: org.hibernate.MappingException: Could not determine type for: java.uti ...