[SNOI2017]一个简单的询问【莫队+容斥原理】
题目大意
给你一个数列,让你求两个区间内各个数出现次数的乘积的和。
分析
数据范围告诉我们可以用莫队过。
我并不知道什么曼哈顿什么乱七八糟的东西,但是我们可以用容斥原理将这个式子展开来。
\[\sum^{\infty}_{0}get(l_1,r_1,x)\times get(l_2,r2,x)\]
上述式子是题目给出的式子。
我们都知道乘法具有交换律和分配律。
将式子展开成以下的性质
\[\sum^{\infty}_{x=0} get(0,r_1,x) \times get(0,r_2,x)-\sum^{\infty}_{x=0}get(0,l_1-1,x)\times get(0,r_2,x)-\sum^{\infty}_{x=0}get(0,r_1,x)\times get(0,l_2-1,x)+\sum^{\infty}_{x=0}get(0,l_1-1,x)\times get(0,l_2-1,x)\]
将询问拆成四个部分,最终一起解决,就可以了。
代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define N 50005
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1; char ch = 0;
for (; ch < '0' || ch > '9'; ch = getchar())
if (ch == '-') fl = -1;
for (; ch >= '0' && ch <= '9'; ch = getchar())
x = (x << 1) + (x << 3) + (ch ^ 48);
x *= fl;
}
struct Rec_Qus {
int l, r, id, blo, opt;
}q[N << 2];
int Dl[N], Dr[N], a[N];
ll res, ans[N];
int n, m, tot, block;
bool cmp(Rec_Qus A, Rec_Qus B) {
return (A.blo == B.blo)? (A.r < B.r): (A.blo < B.blo);
}
void AddL(int x) { res += Dr[a[x]]; ++ Dl[a[x]]; }
void AddR(int x) { res += Dl[a[x]]; ++ Dr[a[x]]; }
void DecL(int x) { res -= Dr[a[x]]; -- Dl[a[x]]; }
void DecR(int x) { res -= Dl[a[x]]; -- Dr[a[x]]; }
int main() {
ms(Dl, 0); ms(Dr, 0);
read(n); block = sqrt(n);
for (int i = 1; i <= n; i ++) read(a[i]);
read(m);
tot = 0;
for (int i = 1; i <= m; i ++) {
int l1, r1, l2, r2;
read(l1); read(r1); read(l2); read(r2);
q[++ tot] = (Rec_Qus) {l1 - 1, l2 - 1, i, (l1 - 2) / block + 1, 1};
q[++ tot] = (Rec_Qus) {r1, r2, i, (r1 - 1) / block + 1, 1};
q[++ tot] = (Rec_Qus) {l1 - 1, r2, i, (l1 - 2) / block + 1, -1};
q[++ tot] = (Rec_Qus) {r1, l2 - 1, i, (r1 - 1) / block + 1, -1};
}
sort(q + 1, q + 1 + tot, cmp);
int l = 0, r = 0;
for (int i = 1; i <= tot; i ++) {
while (r < q[i].r) AddR(++ r);
while (l > q[i].l) DecL(l --);
while (r > q[i].r) DecR(r --);
while (l < q[i].l) AddL(++ l);
ans[q[i].id] += q[i].opt * res;
}
for (int i = 1; i <= m; i ++) printf("%lld\n", ans[i]);
return 0;
}
[SNOI2017]一个简单的询问【莫队+容斥原理】的更多相关文章
- 【BZOJ5016】[Snoi2017]一个简单的询问 莫队
[BZOJ5016][Snoi2017]一个简单的询问 Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计 ...
- Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥
传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ...
- 【bzoj5016】[Snoi2017]一个简单的询问 莫队算法
题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ...
- bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5016 https://loj.ac/problem/2254 题解 原式是这样的 \[ \su ...
- BZOJ5016:[SNOI2017]一个简单的询问(莫队)
Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...
- [SNOI2017]一个简单的询问
[SNOI2017]一个简单的询问 题目大意: 给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x) ...
- BZOJ5016 Snoi2017一个简单的询问(莫队)
容易想到区间转化成前缀和.这样每个询问有了二维坐标,莫队即可. #include<iostream> #include<cstdio> #include<cmath> ...
- bzoj 5016: [Snoi2017]一个简单的询问
Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...
- [bzoj5016][Snoi2017]一个简单的询问
来自FallDream的博客,未经允许,请勿转载,谢谢. 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中 ...
随机推荐
- stark组件配置,二层URL
1.django的admin配置 2 stark组件开发 3.2层url分发 4.小结 1.django的admin配置 model.py from django.db import models # ...
- html总结:文本框填满表格
<style> input { width: 100%; }</style>
- Mysql连接数、线程数、数据包
https://blog.csdn.net/qq_26545305/article/details/79675507
- Spring.profile配合Jenkins发布War包,实现开发、测试和生产环境的按需切换
前两篇不错 Spring.profile实现开发.测试和生产环境的配置和切换 - Strugglion - 博客园https://www.cnblogs.com/strugglion/p/709102 ...
- Oracle 同义词(Synonym)
同义词(Synonym)是表.索引.视图等模式对象的一个别名.通过模式对象创建同义词,可以隐藏对象的实际名称和所有者信息,隐藏分布式数据库中远程对象的设置信息,由此为对象提提供一定的安全性保证.同义词 ...
- Azure系列2.1.9 —— CloudBlob
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...
- Windows 机器上面同时安装mysql5.6 和 mysql5.7 的方法
1. 自己遇到的两个坑: . mysql 登录的时候 需要使用-P 来指定端口号 不然默认走 呢 . mysql 5.6 和 mysql 5.7 更改用户密码的命令不一样.. 我这边浪费了很长时间: ...
- jQuery ajax解析xml文件demo
解析xml文件,然后将城市列表还原到下拉列表框中:当选择下拉列表框时,在对应的文本框中显示该城市信息. 前端代码: <!doctype html> <html> <hea ...
- 剑指offer(11)
题目: 输入一个链表,输出该链表中倒数第k个结点. 思路: 我们一先想到的应该是循环两次链表,第一次获得它的长度,然后用长度-k,得出目标节点在链表的第几位,再循环一次. 如果要求只用一次循环的话,我 ...
- Gevent 性能和 gevent.loop 的运用和带来的思考
知乎自己在底层造了非常多的轮子,而且也在服务器部署方面和数据获取方面广泛使用 gevent 来提高并发获取数据的能力.现在开始我将结合实际使用与测试慢慢完善自己对 gevent 更全面的使用和扫盲. ...