【UOJ#177】欧拉回路

题面

UOJ

题解

首先图不连通就没啥好搞的了。

对于无向图而言,每个点度数为偶数。

对于有向图而言,每个点入度等于出度。

然后就是一本通上有的做法,直接\(dfs\)一遍就好了。。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<2];
int h[MAX],cnt=2,dg1[MAX],dg2[MAX];bool vis[MAX<<1];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;dg1[u]++,dg2[v]++;}
int t,m,n,ans[MAX<<1],tot;
void dfs(int u)
{
for(int &i=h[u];i;i=e[i].next)
{
if(vis[i>>(t&1)])continue;int j=i;
vis[i>>(t&1)]=true;dfs(e[i].v);
ans[++tot]=(((t&1)&(j&1))?-1:1)*(j>>(t&1));
}
}
int main()
{
t=read();n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);if(t&1)Add(v,u);
}
for(int i=1;i<=n;++i)if((t==1&&((dg1[i]&1)||(dg2[i]&1)))||(t==2&&dg1[i]!=dg2[i])){puts("NO");return 0;}
dfs(e[2].v);
if(tot<m){puts("NO");return 0;}
puts("YES");for(int i=tot;i;--i)printf("%d ",ans[i]-t+1);puts("");
return 0;
}

【UOJ#177】欧拉回路的更多相关文章

  1. UOJ#117. 欧拉回路

    #117. 欧拉回路 题目描述 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次. 一共两个子任务: 这张图是无向图.(50分) 这张图是有向图.(5 ...

  2. 暑假集训2016day3T1 欧拉回路(UOJ #117欧拉回路)(史上最全的欧拉回路纯无向图/有向图解析)

    原题……可惜不会……真是一只大蒟蒻…… ———————————————————————————————— 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好 ...

  3. UOJ 117 欧拉回路(套圈法+欧拉回路路径输出+骚操作)

    题目链接:http://uoj.ac/problem/117 题目大意: 解题思路:先判断度数: 若G为有向图,欧拉回路的点的出度等于入度. 若G为无向图,欧拉回路的点的度数位偶数. 然后判断连通性, ...

  4. 借助Photoshop,Illustrator等设计软件进行WPF图形图像的绘制

    原文:借助Photoshop,Illustrator等设计软件进行WPF图形图像的绘制 本文所示例子是借助第三方设计软件,制作复杂的矢量图形,转成与XAML酷似的SVG,再转换成xaml而实现的. 这 ...

  5. 【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)

    [UOJ#236][IOI2016]railroad(欧拉回路,最小生成树) 题面 UOJ 题解 把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\) ...

  6. 【UOJ#389】【UNR#3】白鸽(欧拉回路,费用流)

    [UOJ#389][UNR#3]白鸽(欧拉回路,费用流) 题面 UOJ 题解 首先第一问就是判断是否存在一条合法的欧拉回路,这个拿度数和连通性判断一下就行了. 第二问判断转的圈数,显然我们只需要考虑顺 ...

  7. 【UOJ 117】欧拉回路

    #117. 欧拉回路 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次. 一共两个子任务: 这张图是无向图.(50分) 输入格式 第一行一个整数 t, ...

  8. 「UOJ#117」 欧拉回路

    欧拉回路 - 题目 - Universal Online Judge 题意: 给定有向图或无向图,求一条欧拉回路. 题解 心路历程:woc什么傻哔东西->哇真香我的吗!(逃 首先我知道很多人把欧 ...

  9. UOJ Round #15 [构造 | 计数 | 异或哈希 kmp]

    UOJ Round #15 大部分题目没有AC,我只是水一下部分分的题解... 225[UR #15]奥林匹克五子棋 题意:在n*m的棋盘上构造k子棋的平局 题解: 玩一下发现k=1, k=2无解,然 ...

随机推荐

  1. iOS 判断当前网络状态的三种方法

    http://www.cocoachina.com/ios/20171103/21039.html 在项目中,为了好的用户体验,有些场景必须线判断网络状态,然后才能决定改干嘛.比如视频播放,需要线判断 ...

  2. 软件工程(FZU2015) 赛季得分榜,第9回合

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...

  3. Individual Project

    这次我自己完成了一个小小的项目,课可以把这篇随笔当做一次实验报告,主要的内容是用JUnit进行单元测试.由于我的技术太弱了,就在博客园里“求师”,按照大神的方法慢慢把这些东西写了下啦来. 不知道怎么搞 ...

  4. gin框架学习手册

    前言 gin框架是go语言的一个框架,框架的github地址是:https://github.com/gin-gonic/gin 转载本文,请标注原文地址:https://www.cnblogs.co ...

  5. WPF中任务栏只显示主窗口

    我们在用WPF开发的时候,常常会遇到在主窗口打开的情况下,去显示子窗口,而此时任务栏同时显示主窗口与子窗口.这样看起来很不美观.所以在弹出子窗口之前,设置它的几个相应属性,便不会出现这种问题了. // ...

  6. SpringBoot 中 JPA 的使用

    详细连接 简书https://www.jianshu.com/p/c14640b63653 新建项目,增加依赖 在 Intellij IDEA 里面新建一个空的 SpringBoot 项目.具体步骤参 ...

  7. hadoop分布式系统架构详解

    hadoop 简单来说就是用 java写的分布式 ,处理大数据的框架,主要思想是 “分组合并” 思想. 分组:比如 有一个大型数据,那么他就会将这个数据按照算法分成多份,每份存储在 从属主机上,并且在 ...

  8. python之路--JavaScript

    一. JavaScript概述 ECMAScript和JavaScript的关系 1996年11月,JavaScript的创造者--Netscape公司,希望这门语言能成为国际化标准,于是决定将Jav ...

  9. 一个实际的案例介绍Spring Boot + Vue 前后端分离

    介绍 最近在工作中做个新项目,后端选用Spring Boot,前端选用Vue技术.众所周知现在开发都是前后端分离,本文就将介绍一种前后端分离方式. 常规的开发方式 采用Spring Boot 开发项目 ...

  10. Python包的相对导入时出现问题解决

    资料参考: https://www.cnblogs.com/ArsenalfanInECNU/p/5346751.html 在python导入包,如下: from .units import * 经常 ...