【XSY2111】Chef and Churus 分块 树状数组
题目描述
有一个长度为\(n\)的数组\(A\)和\(n\)个区间\([l_i,r_i]\),有\(q\)次操作:
\(1~x~y\):把\(a_x\)改成\(y\)
\(2~x~y\):求第\(l\)个区间到第\(r\)个区间的区间和的和。
\(n,q\leq {10}^5,a_i\leq {10}^9\)
题解
分块。
设\(s_i\)为第\(i\)块的所有区间的区间和,\(d_{i,j}\)为第\(i\)块有多少个区间包含了\(j\)这个位置。
修改时修改树状数组和每个区间的区间和。设当前\(a_x=v\),则\(s_i+=(y-v)\times d_{i,x}\)
查询时完整的区间直接查询区间和,不完整的区间就暴力查询。
设块大小为\(m\),时间复杂度为
\]
当\(m=\sqrt{\frac{n}{\log n}}\)时
\]
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ull c[100010];
int a[100010];
int n;
void add(int x,ull v)
{
for(;x<=n;x+=x&-x)
c[x]+=v;
}
ull sum(int x)
{
ull s=0;
for(;x;x-=x&-x)
s+=c[x];
return s;
}
int bl;
ull s[1010];
int d[1010][100010];
int l[100010];
int r[100010];
int block[100010];
int left[100010];
int right[100010];
int main()
{
memset(c,0,sizeof c);
// freopen("xsy2111.in","r",stdin);
// freopen("xsy2111.out","w",stdout);
int m;
scanf("%d",&n);
int i;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
add(i,a[i]);
}
bl=100;
m=(n+bl-1)/bl;
for(i=1;i<=n;i++)
block[i]=(i+bl-1)/bl;
for(i=1;i<=m;i++)
{
left[i]=(i-1)*bl+1;
right[i]=min(i*bl,n);
}
for(i=1;i<=n;i++)
{
scanf("%d%d",&l[i],&r[i]);
s[block[i]]+=sum(r[i])-sum(l[i]-1);
d[block[i]][l[i]]++;
if(r[i]<n)
d[block[i]][r[i]+1]--;
}
int j;
for(i=1;i<=m;i++)
for(j=2;j<=n;j++)
d[i][j]+=d[i][j-1];
int q;
scanf("%d",&q);
int op,x,y,k;
for(i=1;i<=q;i++)
{
scanf("%d%d%d",&op,&x,&y);
if(op==1)
{
int v=a[x];
for(j=1;j<=m;j++)
s[j]+=ull(y-v)*d[j][x];
add(x,y-v);
a[x]=y;
}
else
{
ull ans=0;
for(j=block[x];j<=block[y];j++)
if(left[j]>=x&&right[j]<=y)
ans+=s[j];
else
{
int mi=max(left[j],x);
int mx=min(right[j],y);
for(k=mi;k<=mx;k++)
ans+=sum(r[k])-sum(l[k]-1);
}
printf("%llu\n",ans);
}
}
return 0;
}
【XSY2111】Chef and Churus 分块 树状数组的更多相关文章
- 【xsy2111】 【CODECHEF】Chef and Churus 分块+树状数组
题目大意:给你一个长度为$n$的数列$a_i$,定义$f_i=\sum_{j=l_i}^{r_i} num_j$. 有$m$个操作: 操作1:询问一个区间$l,r$请你求出$\sum_{i=l}^{r ...
- 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu
https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...
- 【BZOJ 3295】动态逆序对 - 分块+树状数组
题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...
- 【bzoj2141】排队 分块+树状数组
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别, ...
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
- Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2886 Solved: 924[Submit][Stat ...
- BZOJ3787:Gty的文艺妹子序列(分块,树状数组)
Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...
- 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...
- [P3759][TJOI2017]不勤劳的图书管理员(分块+树状数组)
题目描述 加里敦大学有个帝国图书馆,小豆是图书馆阅览室的一个书籍管理员.他的任务是把书排成有序的,所以无序的书让他产生厌烦,两本乱序的书会让小豆产生 这两本书页数的和的厌烦度.现在有n本被打乱顺序的书 ...
随机推荐
- MRO C3算法 super的运用
-------------态度决定成败,无论情况好坏,都要抱着积极的态度,莫让沮丧取代热心.生命可以价值极高,也可以一无是处,随你怎么去选择.# --------------------------- ...
- js tool 方法之删除数组指定项
最近又开始写博文了,还是在自己的本地项目上做一些小的方法案例. 之前撸代码的时候总是遇到删除数组里某个元素的问题,JS没提供便捷的方法,只能自己写个循环处理,所幸自己写个方法,以后博客项目里要用到就不 ...
- Java面试题详解二:java中的关键字
一,final1.被final修饰的类不可以被继承2.被final修饰的方法不可以被重写3.被final修饰的变量不可以被改变 重点就是第三句.被final修饰的变量不可以被改变,什么不可以被改变呢 ...
- 基于redis实现的点赞功能设计思路详解
点赞其实是一个很有意思的功能.基本的设计思路有大致两种, 一种自然是用mysql等 数据库直接落地存储, 另外一种就是利用点赞的业务特征来扔到redis(或memcache)中, 然后离线刷回mysq ...
- MySQL根据某个字段查询重复的数据
select count(*) '个数',mobile '手机号',`name` '用户名' from users group by mobile having(count(*) > 1); = ...
- IdentityServer4【Topic】之登陆注册
Sign-in 登陆注册 为了让标识服务器(identity server)代表用户发出令牌,该用户必须登录到标识服务器. Cookie authentication Cookie认证 身份验证是由来 ...
- hive字符函数
- Mysql优化单表查询
借助explain分析SQL,判断该怎么建立索引. 还需要注意,有些情况会导致索引失效,用不上索引,应该优化SQL,应用上索引. 什么情况导致索引失效? 1.在索引列上做任何操作(计算.函数.类型转换 ...
- 移动端Web界面滚动touch事件
解决办法一: elem.addEventListener( 'touchstart', fn, { passive: false } ); 解决办法二: * { touch-action: pan-y ...
- InnoDB: Error: Table "mysql"."innodb_table_stats" not found.
问题:打开mysql错误日志时发现大量的如下错误 Error: Table "mysql"."innodb_table_stats" not found. In ...