<题目链接>

题目大意:

给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点。

解题分析:
很明显,因为 (1 ≤ N ≤ 1000) ,所以无论 N 为多大,(0,1),(1,1),(1,0)这三个点一定能够看到,除这三个点以外,我们根据图像分析可得,设一个点的坐标为(x,y) ,那么只有符合gcd(x,y)=1的点才能被看到。又因为 (0,0)---(n,n)对角线两端的点对称,所以我们只需算一边即可,而一边的点数根据欧拉函数可得: $\sum_{i=2}^{n}\varphi{(i)}$

所以最终的点数为:$$2*\sum_{i=2}^{n}\varphi{(i)}+3$$

#include <cstdio>
#define N int(1e3+10)
typedef long long ll;
int euler[N];
void init(){
euler[]=;
for(int i=;i<N;i++)euler[i]=i;
for(int i=;i<N;i++)
if(euler[i]==i)
for(int j=i;j<N;j+=i)
euler[j]=euler[j]/i*(i-);
}
int main(){
init();
int T,ncase=;scanf("%d",&T);
while(T--){
int n;scanf("%d",&n);
ll ans=;
for(int i=;i<=n;i++)ans+=euler[i];
printf("%d %d %d\n",++ncase,n,*ans+);
}
}

2019-02-12

POJ 3090 Visible Lattice Points 【欧拉函数】的更多相关文章

  1. POJ 3090 Visible Lattice Points 欧拉函数

    链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,而且这些点与(0,0)的连点不经过其它的点. 思路:显而易见, ...

  2. [poj 3090]Visible Lattice Point[欧拉函数]

    找出N*N范围内可见格点的个数. 只考虑下半三角形区域,可以从可见格点的生成过程发现如下规律: 若横纵坐标c,r均从0开始标号,则 (c,r)为可见格点 <=>r与c互质 证明: 若r与c ...

  3. POJ3090 Visible Lattice Points 欧拉函数

    欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...

  4. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  5. POJ 3090 Visible Lattice Points | 其实是欧拉函数

    题目: 给一个n,n的网格,点可以遮挡视线,问从0,0看能看到多少点 题解: 根据对称性,我们可以把网格按y=x为对称轴划分成两半,求一半的就可以了,可以想到的是应该每种斜率只能看到一个点 因为斜率表 ...

  6. poj 3090 Visible Lattice Points(离线打表)

    这是好久之前做过的题,算是在考察欧拉函数的定义吧. 先把欧拉函数讲好:其实欧拉函数还是有很多解读的.emmm,最基础同时最重要的算是,¢(n)表示范围(1, n-1)中与n互质的数的个数 好了,我把规 ...

  7. [poj] 3090 Visible Lattice Points

    原题 欧拉函数 我们发现,对于每一个斜率来说,这条直线上的点,只有gcd(x,y)=1时可行,所以求欧拉函数的前缀和.2*f[n]+1即为答案. #include<cstdio> #def ...

  8. POJ3090 Visible Lattice Points 欧拉筛

    题目大意:给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 线y=x和坐标轴上的点都被(1,0)(0,1)(1,1)挡住了.除这三个钉子外,如果一个点(x,y)不互质,则 ...

  9. POJ 3090 Visible Lattice Points (ZOJ 2777)

    http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...

随机推荐

  1. linux 批量进行:解压缩某一类压缩文件类型的文件

    1: 编写脚本 [oracle@oracle oracle]$ vim unzip.sh ziphome=/u01/app/oracle ziplist=`du -a $ziphome |grep ' ...

  2. Confluence 6 配置 HTTP 超时设置

    当宏,例如 RSS Macro 进行 HTTP 请求的时候,有可能因为请求的时间比较长,而导致超时.你可以通过设置系统参数来避免这个问题. 配置 HTTP 超时设置: 在屏幕的右上角单击 控制台按钮  ...

  3. Confluence 6 查看空间活动需要注意的地方

    希望查看空间的活动情况,Confluence Usage Stats  插件必须在系统中启用.这个插件启用的话将会导致系统的性能问题.针对大型的 Confluence 站点,这个插件在默认情况下是禁用 ...

  4. Confluence 6 注册外部小工具

    你可以从外部站点中注册小工具(Gadget)(例如 Jira 应用),你注册成功的小工具将会在 宏浏览器中显示出来,使用你 Confluence 站点的用户可以使用 Gadget Macro 来调用它 ...

  5. Confluence 6 自定义管理员联系信息

    你可以自定义在 联系站点管理员(Contact Site Administrators)页面中显示的消息. 希望编辑这个管理员联系消息: 在屏幕的右上角单击 控制台按钮 ,然后选择 General C ...

  6. EasyUI Layout 添加、删除、折叠、展开布局

    <!DOCTYPE html> <html> <head> <title>吹泡泡的魚-主页</title> <link rel=&qu ...

  7. selenium 无法启动IE

    解决办法是IE选项设置的安全页中,4个区域的启用保护模式的勾选都去掉(或都勾上)

  8. ajax请求成功 但是被error拦截

    前端与后台的数据格式不符合 例如后台发过来的一段数据格式是json 然而我们却用默认的fromData去解析,便会被error拦截 在ajax 添加 dataType:'json',

  9. Python练习题

    内置函数 # 5.随意写一个20行以上的文件# 运行程序,先将内容读到内存中,用列表存储.# 接收用户输入页码,每页5条,仅输出当页的内容 def user_check(filename,num=5) ...

  10. k-近邻算法-优化约会网站的配对效果

    KNN原理 1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系. 2. 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较. a. 计算新 ...