load iris_data.mat  

P_train = [];
T_train = [];
P_test = [];
T_test = [];
for i = 1:3
temp_input = features((i-1)*50+1:i*50,:);
temp_output = classes((i-1)*50+1:i*50,:);
n = randperm(50); P_train = [P_train temp_input(n(1:40),:)'];
T_train = [T_train temp_output(n(1:40),:)']; P_test = [P_test temp_input(n(41:50),:)'];
T_test = [T_test temp_output(n(41:50),:)'];
end result_grnn = [];
result_pnn = [];
time_grnn = [];
time_pnn = []; for i = 1:4
for j = i:4
p_train = P_train(i:j,:);
p_test = P_test(i:j,:); t = cputime; net_grnn = newgrnn(p_train,T_train); t_sim_grnn = sim(net_grnn,p_test);
T_sim_grnn = round(t_sim_grnn);
t = cputime - t;
time_grnn = [time_grnn t];
result_grnn = [result_grnn T_sim_grnn']; t = cputime;
Tc_train = ind2vec(T_train); net_pnn = newpnn(p_train,Tc_train); Tc_test = ind2vec(T_test);
t_sim_pnn = sim(net_pnn,p_test);
T_sim_pnn = vec2ind(t_sim_pnn);
t = cputime - t;
time_pnn = [time_pnn t];
result_pnn = [result_pnn T_sim_pnn'];
end
end accuracy_grnn = [];
accuracy_pnn = [];
time = [];
for i = 1:10
accuracy_1 = length(find(result_grnn(:,i) == T_test'))/length(T_test);
accuracy_2 = length(find(result_pnn(:,i) == T_test'))/length(T_test);
accuracy_grnn = [accuracy_grnn accuracy_1];
accuracy_pnn = [accuracy_pnn accuracy_2];
end result = [T_test' result_grnn result_pnn]
accuracy = [accuracy_grnn;accuracy_pnn]
time = [time_grnn;time_pnn]

GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu的更多相关文章

  1. ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu

    %ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu load spectra_data.mat temp = randperm(size(NIR,1)); P_tra ...

  2. NN:实现BP神经网络的回归拟合,基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu

    load spectra_data.mat plot(NIR') title('Near infrared spectrum curve—Jason niu') temp = randperm(siz ...

  3. RBF:RBF基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu

    load spectra_data.mat temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(t ...

  4. 基于Python的卷积神经网络和特征提取

    基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测 ...

  5. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  6. 基于HHT和RBF神经网络的故障检测——第二篇论文读后感

    故障诊断主要包括三部分: 1.故障信号检测方法(定子电流信号检测 [ 定子电流幅值和电流频谱 ] ,振动信号检测,温度信号检测,磁通检测法,绝缘检测法,噪声检测法) 2.故障信号的处理方法,即故障特征 ...

  7. 深度学习基础-基于Numpy的卷积神经网络(CNN)实现

    本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN) ...

  8. java环境中基于jvm的两大语言:scala,groovy

    一.java环境中基于jvm的两大语言:scala,groovy 可以在java项目里混编这两种语言: scala:静态语言,多范式语言,糅合了面向对象.面向过程:可以与java和net互操作:融汇了 ...

  9. 冰河教你一次性成功安装K8S集群(基于一主两从模式)

    写在前面 研究K8S有一段时间了,最开始学习K8S时,根据网上的教程安装K8S环境总是报错.所以,我就改变了学习策略,先不搞环境搭建了.先通过官网学习了K8S的整体架构,底层原理,又硬啃了一遍K8S源 ...

随机推荐

  1. IOS 静态库 和 动态库

    库从本质上市一中可执行的二进制格式,可以被载入内存中执行   iOS 中的静态库有 .a 和 .framework 两种形式;  动态库有  .dylib   和  .framework 两种, 后来 ...

  2. java常见命名规则

    常见命名规则: 包:类似文件夹,用于把相同的类名进行区分(小写) 单级:例如:student 多级:例如:cn.student 类或者接口: 一个单词:单词首字母大写,例如:Student 多个单词: ...

  3. 【java】转:Windows系统下面多个jdk版本切换

    转自:https://blog.csdn.net/iamcaochong/article/details/56008545 1.系统-高级系统设置-环境变量 里面的Path值最前面的C:\Progra ...

  4. Python1 简介及安装、基础

    Python介绍 Python是面向对象,高级语言,解释,动态和多用途编程语言.Python易于学习,而且功能强大,功能多样的脚本语言使其对应用程序开发具有吸引力. Python的语法和动态类型具有其 ...

  5. 【python】threadpool的内存占用问题

    先说结论: 在使用多线程时,不要使用threadpool,应该使用threading, 尤其是数据量大的情况.因为threadpool会导致严重的内存占用问题! 对比threading和threadp ...

  6. Linux编程学习笔记(二)

    续上个章节,这个章节主要是Linux的远程登录系统操作笔记 一. Linux一般作为服务器使用,但是服务器都是在机房的,所以不可能经常跑到机房去操作系统,所以使用远程登录系统,在Linux的系统一般使 ...

  7. CSS----注释的坑

    css 中 style 注释 需要用  /*   */ 第一种方法注释,结果是不正确的,css布局会出现问题 第二种方式注释正确,布局不会出现问题

  8. cf里的一些简单组合数题

    cf711D 成环的和不成环的要单独计算,环用双联通做的QAQ /* 所有情况-成环的情况 */ #include<bits/stdc++.h> using namespace std; ...

  9. hdu4276 依赖背包

    网上题解都是用spfa求1-n路径的,但其实dfs一次就可以了.. #include <iostream> #include <cstdio> #include <str ...

  10. Linux文件系统及文件类型

    Linux文件系统: 根文件系统(rootfs) root filesystem LSB, FHS: (FileSystem... /etc,  /usr,  /var,  /root.... /bo ...