Python的hashlib提供了很多摘要算法,如MD5,SHA1等常用算法。

什么是摘要算法呢?摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(如MD5值共32位,且每位都是用16进制进行表示)。

摘要算法就是通过摘要函数对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过。

摘要算法之所以能指出数据是否被篡改过,就是因为摘要函数是一个单向函数,计算digest很容易,但通过digest反推数据data却非常困难,并且对原始数据做出任意的修改都会导致计算出的digest完全不同。

综上所述,只要是一个完整且未被修改过的文件,它的MD5值或者其他算法值都是固定不变的,一旦计算出数值与原作者给出的数值不同,就要当心此文件的安全性了。

那么,利用python怎么计算一个文件的MD5值呢?以下是简写代码:

 import hashlib                                   #导入hashlib模块
def match(file_path,Bytes=1024):
md5_1 = hashlib.md5() #创建一个md5算法对象
with open(file_path,'rb') as f: #打开一个文件,必须是'rb'模式打开
while 1:
data =f.read(Bytes) #由于是一个文件,每次只读取固定字节
if data:     #当读取内容不为空时对读取内容进行update
md5_1.update(data)
else:      #当整个文件读完之后停止update
break
ret = md5_1.hexdigest()      #获取这个文件的MD5值
return ret print(match(r'E:\红军不怕远征难\我与波多野结衣小姐姐的同居生活.avi'))

通过python的hashlib模块计算一个文件的MD5值的更多相关文章

  1. 计算指定文件的MD5值

    /// <summary> /// 计算指定文件的MD5值 /// </summary> /// <param name="fileName"> ...

  2. C# 获取一个文件的MD5值

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...

  3. md5sum 计算和校验文件的md5值

    1. 命令功能 md5算法一般用于检查文件完整性, 2. 语法格式 md5sum  [option]  [file] 参数 参数说明 -b 以二进制模式读入文件 -t 以文本模式读入文件 -c 用来从 ...

  4. C#计算文件的MD5值实例

    C#计算文件的MD5值实例 MD5 是 Message Digest Algorithm 5(信息摘要算法)的缩写,MD5 一种散列(Hash)技术,广泛用于加密.解密.数据签名和数据完整性校验等方面 ...

  5. 通过Python计算一个文件夹大小

    在进行计算一个文件夹内容大小的时候,我们要考虑文件夹内都有什么内容,可能都是一个一个的单文件,也有可能都是子文件夹,或者二者都有,既然要计算整个文件夹的大小,我们当然要计算每一个文件的大小以及每一个子 ...

  6. python计算文件的md5值

    前言 最近要开发一个基于python的合并文件夹/目录的程序,本来的想法是基于修改时间的比较,即判断文件有没有改变,比较两个文件的修改时间即可.这个想法在windows的pc端下测试没有问题. 但是当 ...

  7. 《Python》hashlib模块、configparser模块、logging模块

    一.hashlib模块 Python的hashlib模块中提供了常见的摘要算法,如md5,sha1等等. 摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的字符串(通 ...

  8. python中hashlib模块用法示例

    python中hashlib模块用法示例 我们以前介绍过一篇Python加密的文章:Python 加密的实例详解.今天我们看看python中hashlib模块用法示例,具体如下. hashlib ha ...

  9. python使用xlrd模块读写Excel文件的方法

    本文实例讲述了python使用xlrd模块读写Excel文件的方法.分享给大家供大家参考.具体如下: 一.安装xlrd模块 到python官网下载http://pypi.python.org/pypi ...

随机推荐

  1. React 学习之路 (一)

    先说一说对React的体验,总结 首先react相对angular来说入手简单暴力,在学习的这段时间里发现: 我们每天做的事就是在虚拟DOM上创建元素然后在渲染到真实的DOM中 渲染到真实DOM上的R ...

  2. 用ASPOSE.Cells将HTML表格存为Excel

    前端生成的html表格经常需要导出到excel中,利用JS和Office控件可以做到,但仅限于IE,还要启用安全设置. 想找一个简单的办法将HTML内容直接转换成Excel文件,如果直接修改网页头信息 ...

  3. Android启动页欢迎界面大全 (网址)

    地址:http://download.csdn.net/detail/u013424496/9539810

  4. java中基本类型double和对象类型Double

    Double.valueOf(str)把String转化成Double类型的对象比如Stirng str="1.0";那么Double.valueOf(str)等价于new Dou ...

  5. C和C指针小记(十六)-动态内存分配

    动态内存分配 1.1 为什么使用动态内存分配 直接声明数组的方式的缺点: 1) 声明数组必须指定长度限制.无法处理超过声明长度的数组. 2) 如果声明更大的常量来弥补第一个缺点,会造成更多的内存浪费. ...

  6. xcode工程编译错误之iOS解决CUICatalog: Invalid asset name supplied问题

    [问题分析]: 这个问题其实是老问题,产生原因就是因为在使用的时候 [UIImage imageNamed:]时,图片不存在或者传入的图片名为nil. [解决方法]: 添加一个系统断点,来判断如果图片 ...

  7. MySQL 大表优化方案(长文)

    当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型 ...

  8. luogu2839 [国家集训队]middle

    题目链接:洛谷 题目大意:给定一个长度为$n$的序列,每次询问左端点在$[a,b]$,右端点在$[c,d]$的所有子区间的中位数的最大值.(强制在线) 这里的中位数定义为,对于一个长度为$n$的序列排 ...

  9. ts-loader 安装问题

    首先,有个问题:ts-loader是将typescript转成javascript,转成哪个版本的javascript版本? 查询到参考地址:http://morning.work/page/othe ...

  10. ARGB与RGB、RGBA的区别

    ARGB 是一种色彩模式,也就是RGB色彩模式附加上Alpha(透明度)通道,常见于32位位图的存储结构. RGB 色彩模式是工业界的一种颜色标准,是通过对红(R).绿(G).蓝(B)三个颜色通道的变 ...