题目链接

BZOJ 3503

题解

没想到……直接用暴力的\(O((nm)^3)\)算法,居然能过?!

高斯消元解异或方程组。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#define space putchar(' ')
#define enter putchar('\n')
typedef long long ll;
using namespace std;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 1605;
int n, m, x, g[N][N], ans[N];
const int dx[5] = {0, -1, 1, 0, 0};
const int dy[5] = {0, 0, 0, -1, 1}; void gauss(){
for(int i = 1; i <= x; i++){
if(!g[i][i])
for(int j = i + 1; j <= x; j++)
if(g[j][i]){
for(int k = 1; k <= x + 1; k++)
swap(g[i][k], g[j][k]);
break;
}
for(int j = i + 1; j <= x; j++)
if(g[j][i])
for(int k = i; k <= x + 1; k++)
g[j][k] ^= g[i][k];
}
for(int i = x; i; i--){
if(!g[i][i]) ans[i] = 1;
else{
for(int j = i + 1; j <= x; j++)
g[i][x + 1] ^= ans[j] & g[i][j];
ans[i] = g[i][x + 1];
}
}
} int main(){ read(n), read(m);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++){
x++;
for(int d = 0; d <= 4; d++){
int ti = i + dx[d], tj = j + dy[d];
if(ti <= n && tj <= m && ti && tj)
g[x][(ti - 1) * m + tj] = 1;
}
} gauss();
for(int i = 1; i <= x; i++)
write(ans[i]), i % m ? space: enter; return 0;
}

BZOJ 3503 [CQOI2014]和谐矩阵的更多相关文章

  1. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  2. bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】

    如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...

  3. 3503: [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...

  4. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  5. 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1197  Solved: ...

  6. BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元

    BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...

  7. P3164 [CQOI2014]和谐矩阵

    P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...

  8. BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...

  9. Luogu3164 CQOI2014 和谐矩阵 异或高斯消元

    传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...

随机推荐

  1. International Programming Retreat Day(2018.11.17)

    时间:2018.11.17地点:北京国华投资大厦

  2. 关于ajax的controller层返回jsp页面多个list

    @RequestMapping(value ="findFansChangeRate") @ResponseBody public AjaxJson findFansChangeR ...

  3. 使用IdentityServer4实现一个简单的Oauth2客户端模式授权

    1.首先新建一个webAPI项目做为IdentityServer的服务端,提供生成Token的服务,首先修改Startup.cs文件,如下图: 2.增加一个Config.cs文件,以便于提供资源和认证 ...

  4. C语言基础复习:字符,字符数组,字符串,字符指针

    1. 概述2. 字符2.1 字符定义和大小2.2 字符的输入和输出2.3 字符的计算3. 字符数组3.1 字符数组的定义和大小3.2 字符数组的输入和输出3.3 字符数组的计算4. 字符串4.1 字符 ...

  5. monkey测试基础

    一.环境配置 Java JDK和android SDK 二.基本命令 *安卓手机链接电脑,打开手机的开发者模式,允许usb调试 adb:检查adb是否安装成功 adb devices:查看连接的设备 ...

  6. Python 工程管理及 virtualenv 的迁移

    virtualenv 是管理 python 工程的利器,它可以很好的帮你维护项目中的依赖,使用 virtualenv,还能保持 global 库的干净.不会被不同项目中的第三方库所污染. virtua ...

  7. Maximal Binary Matrix CodeForces - 803A (贪心+实现)

    题目链接 题意有点坑: 给你一个N*N的矩阵,让你填入K个1,使之整个矩阵关于左上到右下的对角线对称,并且这个要求这个矩阵的字典序最大. 对矩阵的字典序的定义是从每一行的第一个元素开始比较,大着为字典 ...

  8. 运行scrapy crawl (文件名)时显示invalid syntax和no modle 'win32api'解决方案

    使用pycharm爬取知乎网站的时候,在terminal端输入scarpy crawl zhihu,提示语法错误,如下: 原因是python3.7中将async设为关键字,根据错误提示,找到manho ...

  9. HDU 2024 C语言合法标识符

    http://acm.hdu.edu.cn/showproblem.php?pid=2024 Problem Description 输入一个字符串,判断其是否是C的合法标识符.   Input 输入 ...

  10. Linux: HowTo See Directory Tree Structure

    https://www.cyberciti.biz/faq/linux-show-directory-structure-command-line/ Linux: HowTo See Director ...