【BZOJ2142】礼物(拓展卢卡斯定理)

题面

BZOJ

洛谷

题解

显然如果\(\sum w_i>n\)无解。

否则答案就是:\(\displaystyle \prod_{i=1}^m{n-\sum_{j=0}^{i-1}w_j\choose w_i}\)。

因为并没有保证\(P\)是质数,所以需要用到拓展卢卡斯。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
ll sum;
int P,n,m,M[50],V[50],w[50];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s*=a;a*=a;b>>=1;}
return s;
}
int fpow(int a,int b,int MOD)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==0){x=1;y=0;return;}
exgcd(b,a%b,y,x);y-=a/b*x;
}
int inv(int a,int b)
{
int x,y;exgcd(a,b,x,y);
x=(x%b+b)%b;return x;
}
int fac[50],pw[50],tot;
int JC(int n,int p,int MOD,int &z)
{
if(!n){z=0;return 1;}
int ret=JC(n/p,p,MOD,z);z+=n/p;
int s=1;
if(n>=MOD)
{
for(int i=1;i<=MOD;++i)if(i%p)s=1ll*s*i%MOD;
s=fpow(s,n/MOD,MOD);n%=MOD;
}
for(int i=1;i<=n;++i)if(i%p)s=1ll*s*i%MOD;
ret=1ll*ret*s%MOD;
return ret;
}
int CRT()
{
for(int i=2;i<=tot;++i)
{
int x,y;exgcd(M[1],M[i],x,y);
x=(1ll*x*(V[i]-V[1])%M[i]+M[i])%M[i];
V[1]=(V[1]+1ll*x*M[1])%(M[1]*M[i]);
M[1]*=M[i];
}
return V[1];
}
int main()
{
scanf("%d%d%d",&P,&n,&m);
for(int i=1;i<=m;++i)scanf("%d",&w[i]),sum+=w[i];
if(sum>n){puts("Impossible");return 0;}
for(int i=2;i*i<=P;++i)
if(P%i==0)
{
fac[++tot]=i;
while(P%i==0)++pw[tot],P/=i;
}
if(P>1)fac[++tot]=P,pw[tot]=1;
for(int i=1;i<=tot;++i)
{
int N=n,zero=0,z=0,a=1,b=1,MOD=fpow(fac[i],pw[i]);
a=JC(N,fac[i],MOD,z);zero+=z;
b=JC(N-sum,fac[i],MOD,z);zero-=z;
for(int j=1;j<=m;++j)
b=1ll*b*JC(w[j],fac[i],MOD,z)%MOD,zero-=z;
M[i]=MOD;V[i]=1ll*a*inv(b,MOD)%MOD*fpow(fac[i],zero,MOD)%MOD;
}
printf("%d\n",CRT());
}

【BZOJ2142】礼物(拓展卢卡斯定理)的更多相关文章

  1. bzoj2142 礼物——扩展卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...

  2. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...

  3. 【BZOJ3129】[SDOI2013]方程(容斥,拓展卢卡斯定理)

    [BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大, ...

  4. 【BZOJ-2142】礼物 拓展Lucas定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1313  Solved: 541[Submit][Status][Discuss] ...

  5. BZOJ2142礼物——扩展卢卡斯

    题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...

  6. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  7. 【bzoj2142】【礼物】拓展Lucas定理+孙子定理

    (上不了p站我要死了,侵权度娘背锅) Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量 ...

  8. bzoj2142: 礼物

    2142: 礼物 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会 ...

  9. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

随机推荐

  1. VB6 变量定义作用域的一个奇特形式

    C#或JAVA 下面的i定义是只会限定在if 条件块里的: if (1 == 2) { int i = 000; } else { i = 111;// 错误,未定义. } i = 222;//错误 ...

  2. windows服务中对外提供API接口

    public class SendMqService { private static bool isExcute = true; private static HttpListener listen ...

  3. [JDBC]ORA-01000: 超出打开游标的最大数(ORA-01000: maximum open cursors exceeded)

    问题产生的原因: Java代码在执行conn.createStatement()和conn.prepareStatement()的时候,相当于在数据库中打开了一个cursor.由于oracle对打开的 ...

  4. 止不住的裁员潮:看京东前员工吐槽——绩效打C还希望我好好干

    昨天,京东裁员消息被证实,京东将在2019年末位淘汰10%的副总裁级别以上的高管. 在互联网职场交流社区,一名自称京东的员工如此吐槽:办完离职了心情大好,自由放飞,明天入职新公司,你给新员工打C,还希 ...

  5. Thrift_简介(基于C#)

    //Server: TProtocolFactory ProtocolFactory = new TBinaryProtocol.Factory(true, true); TTransportFact ...

  6. CSS 列表实例

    CSS 列表属性允许你放置.改变列表项标志,或者将图像作为列表项标志.CSS 列表属性(list)属性 描述list-style 简写属性.用于把所有用于列表的属性设置于一个声明中.list-styl ...

  7. E. Train Hard, Win Easy

    链接 [http://codeforces.com/contest/1043/problem/E] 题意 有n个人,每个人都有做出a,b题的分数,xi,yi,但是有些人是不能组队的,问你每个人和其他能 ...

  8. 20135337——Linux实践二:模块

    一.编译&生成&测试&删除 1.编写模块代码,查看如下 gedit 1.c(编写) cat 1.c(查看) MODULE_AUTHOR("Z") MODUL ...

  9. 第二个spring冲刺第10天(及第二阶段总结)

    第二阶段算是结束了,第二阶段,我们实现了基本的功能,这是软件的开始页面,点击便会进入学习画面,目前学习画面还有待改善   燃尽图3 眨眼就完结了第二阶段的冲刺了,大致整体结构已经完成. 第二阶段总体是 ...

  10. beta(3/7)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 协助后端完成历史记录接口.美食排行榜接口 完成食堂平面图的绘制 确定web端业 ...