【BZOJ2142】礼物(拓展卢卡斯定理)
【BZOJ2142】礼物(拓展卢卡斯定理)
题面
题解
显然如果\(\sum w_i>n\)无解。
否则答案就是:\(\displaystyle \prod_{i=1}^m{n-\sum_{j=0}^{i-1}w_j\choose w_i}\)。
因为并没有保证\(P\)是质数,所以需要用到拓展卢卡斯。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
ll sum;
int P,n,m,M[50],V[50],w[50];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s*=a;a*=a;b>>=1;}
return s;
}
int fpow(int a,int b,int MOD)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==0){x=1;y=0;return;}
exgcd(b,a%b,y,x);y-=a/b*x;
}
int inv(int a,int b)
{
int x,y;exgcd(a,b,x,y);
x=(x%b+b)%b;return x;
}
int fac[50],pw[50],tot;
int JC(int n,int p,int MOD,int &z)
{
if(!n){z=0;return 1;}
int ret=JC(n/p,p,MOD,z);z+=n/p;
int s=1;
if(n>=MOD)
{
for(int i=1;i<=MOD;++i)if(i%p)s=1ll*s*i%MOD;
s=fpow(s,n/MOD,MOD);n%=MOD;
}
for(int i=1;i<=n;++i)if(i%p)s=1ll*s*i%MOD;
ret=1ll*ret*s%MOD;
return ret;
}
int CRT()
{
for(int i=2;i<=tot;++i)
{
int x,y;exgcd(M[1],M[i],x,y);
x=(1ll*x*(V[i]-V[1])%M[i]+M[i])%M[i];
V[1]=(V[1]+1ll*x*M[1])%(M[1]*M[i]);
M[1]*=M[i];
}
return V[1];
}
int main()
{
scanf("%d%d%d",&P,&n,&m);
for(int i=1;i<=m;++i)scanf("%d",&w[i]),sum+=w[i];
if(sum>n){puts("Impossible");return 0;}
for(int i=2;i*i<=P;++i)
if(P%i==0)
{
fac[++tot]=i;
while(P%i==0)++pw[tot],P/=i;
}
if(P>1)fac[++tot]=P,pw[tot]=1;
for(int i=1;i<=tot;++i)
{
int N=n,zero=0,z=0,a=1,b=1,MOD=fpow(fac[i],pw[i]);
a=JC(N,fac[i],MOD,z);zero+=z;
b=JC(N-sum,fac[i],MOD,z);zero-=z;
for(int j=1;j<=m;++j)
b=1ll*b*JC(w[j],fac[i],MOD,z)%MOD,zero-=z;
M[i]=MOD;V[i]=1ll*a*inv(b,MOD)%MOD*fpow(fac[i],zero,MOD)%MOD;
}
printf("%d\n",CRT());
}
【BZOJ2142】礼物(拓展卢卡斯定理)的更多相关文章
- bzoj2142 礼物——扩展卢卡斯定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- 【BZOJ3129】[SDOI2013]方程(容斥,拓展卢卡斯定理)
[BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大, ...
- 【BZOJ-2142】礼物 拓展Lucas定理
2142: 礼物 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1313 Solved: 541[Submit][Status][Discuss] ...
- BZOJ2142礼物——扩展卢卡斯
题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...
- [bzoj2142]礼物(扩展lucas定理+中国剩余定理)
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...
- 【bzoj2142】【礼物】拓展Lucas定理+孙子定理
(上不了p站我要死了,侵权度娘背锅) Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量 ...
- bzoj2142: 礼物
2142: 礼物 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会 ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
随机推荐
- 在angularjs实现一个时钟
想在网页上,显示当前系统时钟. <body ng-app="App2" ng-controller="Ctrl2"> <div ng-bind ...
- (一)在 Blend 中绘制形状和路径
原文:(一)在 Blend 中绘制形状和路径 https://docs.microsoft.com/zh-cn/previous-versions/jj170881(v=vs.120) 在 Blend ...
- java 基础02 打包package
- Python高阶函数--map
map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把list 的每个元素依次作用在函数 f 上,得到一个新的 list 并返回. 例如,对于lis ...
- Centos下添加静态路由(临时和永久有效)的操作记录
公司IDC机房服务器上部署了一套外网LB环境,默认配置的是外网ip的路由地址,由于要和其他内网机器通信,所以需要配置内网ip的路由地址.整个操作过程,记录如下,以供以后参考学习: 1)内网网卡绑定 [ ...
- php类之clone 克隆
对象也能被“克隆” 在php5中,对象的传递方式默认为引用传递,如果我们想要在内存中生成两个一样的对象或者创建一个对象的副本,这时可以使用“克隆”. 通过 clone 克隆一个对象 对象的复制是通过关 ...
- v-for v-if || v-else
<el-col> <div v-for="item in resultDetail" class="physical-content" v-i ...
- 安装Visual Studio 2013以及简单使用
首先,在网上找到安装Visual Studio 2013的教程以及相关软件资源http://jingyan.baidu.com/article/09ea3ede3b2496c0afde3944.htm ...
- 【个人阅读】软件工程M1/M2做一个总结
1.以前博客链接 http://www.cnblogs.com/penglinjiang/p/4027850.html http://www.cnblogs.com/penglinjiang/p/40 ...
- PHP利用GD库处理图片方法实现
这里写的是完成每个功能的函数,可以复制单个函数直接使用,这里的每个函数都是另外一篇PHP常用类------图片处理类Image当中的方法进行细化,可以参考一下 废话不多说,直接付代码吧! 添加水印(文 ...