【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)

题面

BZOJ

洛谷

题解

这题好神仙啊,窝不会QaQ。

假装一下只有三个元素\(a_{i-1},a_i,a_{i+1}\),并且满足,\(a_{i-1}\le a_i\ge a_{i+1}\)那么肯定是\(a_{i-1}+a_{i+1}\)、\(a_i\)这样子分配的。那么两个人的差就是\(a_{i-1}+a_{i+1}-a_i\),那么我们把\(i\)和旁边两个元素直接合并就好了,反正只要知道了两个人的差和所有元素之和就能还原答案。

不难发现这样子合并完之后序列要么单增要么单减。

我们发现中间被分开的一段段是一个双端队列,可以从两端取。两侧被分割的部分是一个栈,只能一侧取。显然两侧的按照奇偶可以直接分配好谁去哪一侧。而剩下的部分因为单调,所以显然排序之后两个人一个个轮流取就好了。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,l,r,fr,top;ll S[MAX],sum,ans;bool vis[MAX];
bool check(int p){if(vis[p]||vis[p-1]||vis[p+1])return false;return S[p-1]<=S[p]&&S[p]>=S[p+1];}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
S[++top]=read();sum+=S[top];vis[top]=(S[top]==0);fr^=(bool)(S[top]);
while(top>=3&&check(top-1))S[top-2]=S[top-2]+S[top]-S[top-1],top-=2;
}
for(l=1;!vis[l]&&!vis[l+1]&&S[l]>=S[l+1];l+=2)ans+=(S[l]-S[l+1])*(fr?1:-1);
for(r=top;!vis[r]&&!vis[r-1]&&S[r]>=S[r-1];r-=2)ans+=(S[r]-S[r-1])*(fr?1:-1);
top=0;for(int i=l;i<=r;++i)if(!vis[i])S[++top]=S[i];sort(&S[1],&S[top+1]);
for(int i=top;i;--i)ans+=((top-i)&1)?-S[i]:S[i];
cout<<(sum+ans)/2<<' '<<(sum-ans)/2<<endl;
return 0;
}

【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)的更多相关文章

  1. [luogu] P3210 [HNOI2010]取石头游戏(贪心)

    P3210 [HNOI2010]取石头游戏 题目描述 A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参 ...

  2. 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)

    [BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...

  3. bzoj2000 [Hnoi2010]stone 取石头游戏

    Description A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参加比赛. 与经典的取石子游戏相 ...

  4. [HNOI2010]STONE取石头游戏

    题目描述 A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参加比赛. 与经典的取石子游戏相比,A公司举办 ...

  5. HDU 2516 取石子游戏 (博弈论)

    取石子游戏 Problem Description 1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...

  6. 【POJ】1067 取石子游戏(博弈论)

    Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

  7. 【洛谷2252&HDU1527】取石子游戏(博弈论)

    题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...

  8. [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论

    取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...

  9. 洛谷P1288 取数游戏II[博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

随机推荐

  1. Luogu P2002 消息扩散&&P1262 间谍网络

    怕自己太久没写Tarjan了就会把这种神仙算法忘掉. 其实这种类型的图论题的套路还是比较简单且显然的. P2002 消息扩散 很显然的题目,因为在一个环(其实就是强连通分量)中的城市都只需要让其中一个 ...

  2. Spring Cloud 入门教程(十):和RabbitMQ的整合 -- 消息总线Spring Cloud Netflix Bus

    在本教程第三讲Spring Cloud 入门教程(三): 配置自动刷新中,通过POST方式向客户端发送/refresh请求, 可以让客户端获取到配置的最新变化.但试想一下, 在分布式系统中,如果存在很 ...

  3. linux 下隐藏进程的一种方法

    前言 本文所用到的工具在 https://github.com/gianlucaborello/libprocesshider 可以下载 思路就是利用 LD_PRELOAD 来实现系统函数的劫持 LD ...

  4. [UWP 自定义控件]了解模板化控件(5.1):TemplatePart vs. VisualState

    1. TemplatePart vs. VisualState 在前面两篇文章中分别使用了TemplatePart及VisualState的方式实现了相同的功能,其中明显VisualState的方式更 ...

  5. 手机APP自动化之uiautomator2 +python3 UI自动化

    题记: 之前一直用APPium直到用安卓9.0  发现uiautomatorviewer不支持安卓 9.0,点击截屏按钮 一直报错,百度很久解决方法都不可以,偶然间看见有人推荐:uiautomator ...

  6. PEP8 Python编程规范

    官方文档: https://www.python.org/dev/peps/pep-0008/ ---------------------------------------------------- ...

  7. 【Beta阶段】第七次Scrum Meeting!

    每日任务内容: 本次会议为第七次Scrum Meeting会议~ 由于本次会议项目经理召开时间为10:00,在宿舍召开,召开时长约20分钟. 队员 昨日完成任务 明日要完成任务 刘乾 #177(未完成 ...

  8. Daily Scrum- 12/23

    Meeting Minutes 与Travis和Zhongqiu讨论了Beta的Feature以及更长期的计划: 讨论了一些使用及设计上的Bug (Feature); 开始了新的开发周期: Burnd ...

  9. Ajax的注意事项

    case 1: 无论是使用原生的JavaScript,还是JQuery,通过Ajax请求后端程序数据,返回的数据默认是字符串,字符串,字符串,重要的事情说三遍!!! case 2: 不要尝试直接将返回 ...

  10. Ehcache Monitor使用一例

    场景介绍:系统集成Shiro,使用Ehcache保存用户登录限制次数,常有用户密码被锁,影响工作效率. 在不考虑集成SSO,LDAP,也不引入身份校验,邮件,短信等解锁特性下.使用Ehcache Mo ...