解答:这里数学归纳法证明时指出关键的变形.

评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目。

MT【33】证明琴生不等式的更多相关文章

  1. MT【25】切线不等式原理及例题

    评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.

  2. MT【19】舒尔不等式设计理念及证明

    评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.

  3. MT【322】绝对值不等式

    已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...

  4. MT【72】一个不等式

    证明: 评: 可以思考$\frac{1}{(1+b)^2}+\frac{1}{(1+a)^2}$与$\frac{2}{(1+\sqrt{ab})^2}$大小.

  5. MT【318】分式不等式双代换

    已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}$,求$\dfrac{1}{a-1}+\dfrac{4}{b-1}$的最小值. 解:令$m=\d ...

  6. MT【310】均值不等式

    (2014北约自主招生)已知正实数$x_1,x_2,\cdots,x_n$满足$x_1x_2\cdots x_n=1,$求证:$(\sqrt{2}+x_1)(\sqrt{2}+x_2)\cdots(\ ...

  7. MT【41】利用不等式妙消参数

    已知$\theta\in[0,2\pi]$对任意$x\in[0,1],2x^2sin\theta-4x(1-x)cos\theta+3(1-x)^2>0$恒成立.求$\theta$的范围. 解答 ...

  8. 【数学基础篇】---详解极限与微分学与Jensen 不等式

    一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...

  9. 从Jensen不等式到Minkowski不等式

    整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 ...

随机推荐

  1. 在lua中创建字段安全的对象

    lua萌新,刚刚学习和使用不到一个月.有不对的地方,还望各路大神不吝赐教. lua中可以用table来模拟对象,但table是可以任意增加键值的.在对象模拟中,暂且也叫它为字段(field)吧.如果在 ...

  2. linux驱动编写之中断处理

    一.中断 1.概念 学过单片机的应该非常清楚中断的概念,也就是CPU在正常执行程序过程中,出现了突发事件(中断事件),于是CPU暂停当前程序的执行,转去处理突发事件.处理完毕后,CPU又返回被中断的程 ...

  3. Codeforces round 1098

    Div1 530 感受到被Div1支配的恐惧了.jpg 真·一个题都不会.jpg(虽然T1是我智障 感受到被构造题支配的恐惧了.jpg A 直接树上贪心就行,是我写错了.jpg B 这个构造超级神仙有 ...

  4. BZOJ3817 清华集训2014 Sum 类欧几里得

    传送门 令\(\sqrt r = x\) 考虑将\(-1^{\lfloor d \sqrt r \rfloor}\)魔改一下 它等于\(1-2 \times (\lfloor dx \rfloor \ ...

  5. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  6. [Oracle]如何观察Table 的各种Lock 之间的冲突

    [Oracle]如何观察Table 的各种Lock 之间的冲突 举例: Session#15 创建表: SID 15==============create table t1 (c1 number)p ...

  7. 【php增删改查实例】第二十三节 - PHP文件上传

    22. PHP文件上传 22.1 资源文件 将这三个东西拷贝项目的根目录. 拷贝完毕后,打开upload.html: 现在,我们在项目的根目录去编写一个upload.php. PHP给我们提供了很多关 ...

  8. Spring Cloud 入门教程(十):和RabbitMQ的整合 -- 消息总线Spring Cloud Netflix Bus

    在本教程第三讲Spring Cloud 入门教程(三): 配置自动刷新中,通过POST方式向客户端发送/refresh请求, 可以让客户端获取到配置的最新变化.但试想一下, 在分布式系统中,如果存在很 ...

  9. cmd命令入门

    第一类: 介绍原生的DOS 首先在cmd命令输入help,看到如下图的结果,这里展示的原生的DOS命令. 这里列出了一些命令,可以自己试试的玩.一般看到一个命令后,如果没有说明文档,你就尝试的在其命令 ...

  10. nginx下目录浏览及其验证功能、版本隐藏等配置记录

    工作中常常有写不能有网页下载东西的需求,在Apache下搭建完成后直接导入文件即可达到下载/显示文件的效果;而Nginx的目录列表功能默认是关闭的,如果需要打开Nginx的目录列表功能,需要手动配置, ...