整数的lqp拆分

【问题描述】

lqp在为出题而烦恼,他完全没有头绪,好烦啊…

他首先想到了整数拆分。整数拆分是个很有趣的问题。给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的。

然后lqp又想到了斐波那契数。定义F0=0,F1=1,Fn=Fn-1+Fn-2 (n>1),Fn就是斐波那契数的第n项。但是求出第n项斐波那契数似乎也不怎么困难…

lqp为了增加选手们比赛的欲望,于是绞尽脑汁,想出了一个有趣的整数拆分,我们暂且叫它:整数的lqp拆分。和一般的整数拆分一样,整数的lqp拆分是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。但是整数的lqp拆分要求的不是拆分总数,相对更加困难一些。对于每个拆分,lqp定义这个拆分的权值Fa1Fa2…Fam,他想知道对于所有的拆分,他们的权值之和是多少?简单来说,就是求

由于这个数会十分大,lqp稍稍简化了一下题目,只要输出对于N的整数lqp拆分的权值和mod 109+7输出即可。

【输入格式】

输入的第一行包含一个整数N。

【输出格式】

输出一个整数,为对于N的整数lqp拆分的权值和mod 109+7。

【样例输入】

3

【样例输出】

5

【数据说明】

20%数据满足:1≤N≤25

50%数据满足:1≤N≤1000

100%数据满足:1≤N≤1000000

luogu链接

打表发现 ans[i] = ans[i - 1] * 2 + ans[i - 2]

 #include <bits/stdc++.h>

 using namespace std;

 const long long MAXN = ;
const long long INF = ;
long long n;
long long ans[MAXN]; void solve() {
ans[] = ;
ans[] = ;
ans[] = ;
for (int i = ; i <= n; ++i) {
ans[i] = ans[i - ] * + ans[i - ];
while (ans[i] > INF) ans[i] -= INF;
}
printf("%lld\n", ans[n]);
} int main () {
scanf("%lld", &n);
solve();
return ;
}

BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分的更多相关文章

  1. 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]

    传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...

  2. 洛谷P4451 [国家集训队]整数的lqp拆分(生成函数)

    题面 传送门 题解 我对生成函数一无所知 我们设\(F(x)\)为斐波那契数列的生成函数,\(G(x)\)为答案的生成函数,那么容易得到递推关系 \[g_n=\sum_{i=0}^{n-1}f_ig_ ...

  3. 洛谷 P4451 [国家集训队]整数的lqp拆分

    洛谷 这个题目是黑题,本来想打表的,但是表调不出来(我逊毙了)! 然后随便打了一个递推,凑出了样例, 竟然. 竟然.. 竟然... A了!!!!!!! 直接:\(f[i]=f[i-1]*2+f[i-2 ...

  4. P4451 [国家集训队]整数的lqp拆分

    #include <bits/stdc++.h> using namespace std; typedef long long LL; inline LL read () { LL res ...

  5. Luogu4451 [国家集训队]整数的lqp拆分

    题目链接:洛谷 题目大意:求对于所有$n$的拆分$a_i$,使得$\sum_{i=1}^ma_i=n$,$\prod_{i=1}^mf_{a_i}$之和.其中$f_i$为斐波那契数列的第$i$项. 数 ...

  6. [国家集训队]整数的lqp拆分

    我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^ ...

  7. [国家集训队]整数的lqp拆分 数学推导 打表找规律

    题解: 考场上靠打表找规律切的题,不过严谨的数学推导才是本题精妙所在:求:$\sum\prod_{i=1}^{m}F_{a{i}}$ 设 $f(i)$ 为 $N=i$ 时的答案,$F_{i}$ 为斐波 ...

  8. P4451-[国家集训队]整数的lqp拆分【生成函数,特征方程】

    正题 题目链接:https://www.luogu.com.cn/problem/P4451 题目大意 给出\(n\),对于所有满足\(\sum_{i=1}^ma_i=n\)且\(\forall a_ ...

  9. BZOJ 2173: 整数的lqp拆分( dp )

    靠着暴力+直觉搞出递推式 f(n) = ∑F(i)f(n-i) (1≤i≤n) (直接想大概也不会很复杂吧...). f(0)=0 感受一下这个递推式...因为和斐波那契有关..我们算一下f(n)+f ...

随机推荐

  1. Vuejs的$nextTick原理

    本质: nextTick,本质上是一个异步API,表示当前同步流程执行完成后再调用传入的函数. 根据环境不同,异步API的实现可以分别通过: setTimeout(0), new Promise(), ...

  2. linux c++ curl 根据IP地址获得当前网络的所在的地理位置

    注意: 可能每个电脑的默认中文编码格式不同,有时会出现乱码,需要对返回内容进行编码转换,或者换成可指定编码格式的接口.如  搜狐IP地址查询接口(可设置编码):http://pv.sohu.com/c ...

  3. spring boot 添加客户端负载均衡

    1.pom.xml文件中,添加依赖包 <dependency> <groupId>org.springframework.cloud</groupId> <a ...

  4. RN环境的搭建

    RN技术详细了解: RN环境的搭建: 1.           首先安装node.js 2.           安装homebrew(网上内容很多自己找,详细的我就不多说了) (1)   在home ...

  5. 阶段01Java基础day22IO流03

    22.01_IO流(序列流) 1.什么是序列流 序列流可以把多个字节输入流整合成一个, 从序列流中读取数据时, 将从被整合的第一个流开始读, 读完一个之后继续读第二个, 以此类推. 2.使用方式 整合 ...

  6. Java基础-方法

    方法 Java方法是语句的集合,它们在一起执行一个功能. 方法是解决一类问题的步骤的有序组合 方法包含于类或对象中 方法在程序中被创建,在其他地方被引用 注意: 在一些其它语言中方法指过程和函数.一个 ...

  7. Delphi 10.3.1 Secure File Sharing解决应用间文件共享

    Delphi 10.3.1 为Android项目提供了Secure File Sharing选择项,默认是False.这一项是设置什么呢? 原来,Android 7及以后的版本,为了加强OS的安全性, ...

  8. Logging常用handlers的使用

    一.StreamHandler 流handler——包含在logging模块中的三个handler之一. 能够将日志信息输出到sys.stdout, sys.stderr 或者类文件对象(更确切点,就 ...

  9. 基于VM上的Ubuntu16.04如何和window界面进行复制,粘贴工作

    1.卸载VMware tools: sudo apt-get autoremove open-vm-tools 2.安装界面版VMware tools. sudo apt-get install op ...

  10. GAN 教程记录

    目标:使G产生的分布sample出来接近D的分布 1.G产生的data是否是database中的图片 a.计算L1 L2相似度 2.GAN与其他生成器相比较,能够生成较为清晰的图片 3.一次itera ...