第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。

接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。

接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。

输出格式:

输出包含M行,每行包含一个正整数,依次为每一个询问的结果。

输入样例#1:

5 5 4

3 1

2 4

5 1

1 4

2 4

3 2

3 5

1 2

4 5

输出样例#1:

4

4

1

4

4

模板:时间复杂度nlogn

#include<iostream>
#include<cstdio>
using namespace std;
struct yyy{
int t,
nex;
}e[ * ];
int deepth[], fa[][], lg[], head[];
int tot;
void add(int x, int y) //邻接表存树
{
e[++tot].t = y;
e[tot].nex = head[x];
head[x] = tot;
}
void dfs(int f, int fath)
{
deepth[f] = deepth[fath] + ;
fa[f][] = fath;
for (int i = ; ( << i) <= deepth[f]; i++)
fa[f][i] = fa[fa[f][i - ]][i - ];
for (int i = head[f]; i; i = e[i].nex)
if (e[i].t != fath)
dfs(e[i].t, f);
}
int lca(int x, int y)
{
if (deepth[x]<deepth[y])
swap(x, y);
while (deepth[x]>deepth[y])
x = fa[x][lg[deepth[x] - deepth[y]] - ];
if (x == y)
return x;
for (int k = lg[deepth[x]]; k >= ; k--)
if (fa[x][k] != fa[y][k])
x = fa[x][k], y = fa[y][k];
return fa[x][];
}
int n, m, s;//n节点,m查询,s边数
void init()
{
scanf("%d%d%d", &n, &m, &s);
for (int i = ; i <= n - ; i++)
{
int x, y; scanf("%d%d", &x, &y);
add(x, y); add(y, x);
}
dfs(s, );
for (int i = ; i <= n; i++)
lg[i] = lg[i - ] + ( << lg[i - ] == i);
} int main()
{
init();
for (int i = ; i <= m; i++)
{
int x, y; scanf("%d%d", &x, &y);
printf("%d\n", lca(x, y));
} return ;
}

最近公共祖先(LCA)模板的更多相关文章

  1. 最近公共祖先(LCA)模板

    以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...

  2. 最近公共祖先lca模板

    void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)&l ...

  3. [模板] 最近公共祖先/lca

    简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...

  4. Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)

    Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...

  5. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  6. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  7. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  8. lca最近公共祖先(模板)

    洛谷上的lca模板题--传送门 学了求lca的tarjan算法(离线),在洛谷上做模板题,结果后三个点超时. 又把询问改成链式前向星,才ok. 这个博客,tarjan分析的很详细. 附代码-- #in ...

  9. LCA最近公共祖先——Tarjan模板

    LCA(Lowest Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. Tarjan是一种离线算法,时间复杂度O(n+Q),Q表示询问次数,其中 ...

  10. luogu3379 【模板】最近公共祖先(LCA) 倍增法

    题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...

随机推荐

  1. Xshell6设置字体大小

    Xshell可以远程连接到linux服务器,但有时终端字体太小,可以按照如下步骤修改字体大小: 菜单栏: 文件-属性-外观,修改字体大小后点击确定即可(也可以使用ALT+P快捷键打开属性).

  2. SPI Flash(W25Q16DV) 基本操作

    读取厂家\设备 ID 发送 90H 指令,再发送 00h 的地址,然后接收即可. 代码如下: void SPIFlashReadID(int *pMID, int *pDID) { SPIFlash_ ...

  3. Maven配置国内镜像仓库

    eclipse 位置

  4. H5实现魔方游戏

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. scala中的isInstanceOf和asInstanceOf

    如果实例化了子类的对象,但是将其赋予了父类类型的变量, 在后续的过程中,又需要将父类类型的变量转换为子类类型的变量,应该如何做? Ø  首先,需要使用isInstanceOf 判断对象是否为指定类的对 ...

  6. [PHP]算法-最大子数组问题思路

    最大子数组问题,股票价格示例: 1.在最高价格开始向左寻找之前的最低价格 2.在最低价格开始向右寻找之后的最高价格 3.暴力求解法,尝试每队可能的买进和卖出组合,保证卖出在买进之后 key buy s ...

  7. nginx重启服务

    修改完nginx配置后,需要使用 nginx -s reload使修改的配置生效,配置生效是平滑的,不会对访问产生任何影响reload后会启动新的进程接受新请求,对于未处理完的请求还是用老的配置,直到 ...

  8. Vue学习资料

    1. {{ msg }}插值表达式. v-text:将数据插入到页面中,没有闪烁问题. v-cloak:通过style属性选择器的方式display:none:防止闪烁问题. v-html:将标签解析 ...

  9. layui 图片上传+表单提交+ Spring MVC

    Layui 的上传是最常用的, 不可或缺, 记录一下代码, 以后复制都能用!! 1.前端HTML: <div class="layui-form-item"> < ...

  10. 2018-02-27 "Literate Programming"一书摘记之一

    书到后才发现是Knuth的论文集, 第一篇就在网上: Computer programming as an art (1974). 其中"Taste and Style"(品味和风 ...