[Noip2015PJ] 求和
Description
一条狭长的纸带被均匀划分出了 \(n\) 个格子,格子编号从 \(1\) 到 \(n\) 。每个格子上都染了一种颜色 \(color_i\) 用 \([1,m]\) 当中的一个整数表示),并且写了一个数字 \(number_i\) 。
定义一种特殊的三元组:\((x,y,z)\),其中 \(x,y,z\) 都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:
- \(x,y,z\) 是整数, \(x<y<z\),\(y-x=z-y\)
- \(color_x=color_z\)
满足上述条件的三元组的分数规定为 \((x+z)\times (number_x+number_z)\)。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以 \(10,007\) 所得的余数即可。
Input
第一行是用一个空格隔开的两个正整数 \(n\) 和 \(m\) , \(n\) 表纸带上格子的个数, \(m\) 表纸带上颜色的种类数。
第二行有 \(n\) 用空格隔开的正整数,第 \(i\) 数字 \(number\) 表纸带上编号为 \(i\) 格子上面写的数字。
第三行有 \(n\) 用空格隔开的正整数,第 \(i\) 数字 \(color\) 表纸带上编号为 \(i\) 格子染的颜色。
Output
共一行,一个整数,表示所求的纸带分数除以 \(10,007\) 所得的余数。
Hint
对 于 全 部 \(10\) 组 数 据 , \(1\leq n\leq 100000, 1\leq m\leq 100000, 1\leq color_i\leq m,1\leq number_i\leq 100000\)
Solution
首先能够推导出 \(x\) 和 \(z\) 的编号一定是奇偶性相同的。
所以想到对于奇数点和偶数点分开统计答案。
拆一下 \((x,y,z)\) 三元组对答案产生的贡献:\((x+z)\times (number_x+number_z)=x\times number_x+x\times number_z+z\times number_x+z\times number_z\)
观察拆完的式子,发现后边三项中与 \(x\) 无关的项都能用前缀和维护。
比如说第二项中的 \(x\times number_z,number_z\) 显然能用前缀和统计。即扫描到 \(x\) 节点时它和后面某个点 \(z\) 对答案在第二项的贡献即为 \((qzh\_number[z]-qzh\_number[x])\times x\)。
所以得到了以下这个基本完成的算法:
对于每个颜色,分别开两个数组,存储奇数节点和偶数节点的编号,记为 \(odd\) 和 \(even\)。
对于每个颜色中的 \(even\) 和 \(odd\),再开三个前缀和数组分别维护 \(number_z,z,z\times number_z\) 的和。
然后扫描每个颜色,对每个颜色中存储的每个编号从头到尾扫一遍,答案加上这个点之后的所有点与这个点组成的三元组的贡献即可。
Code
#include<cstdio>
#include<vector>
#include<cctype>
#define N 100005
#define mod 10007
#define int long long
int ans;
int n,m;
int num[N];
int col[N];
bool vis[N];
std::vector<int> even[N],odd[N];
std::vector<int> qzh1[N],qzh2[N],qzh3[N];
std::vector<int> qzh4[N],qzh5[N],qzh6[N];
inline char nc(){
static const int BS=1<<22;
static unsigned char buf[BS],*st,*ed;
if(st==ed) ed=buf+fread(st=buf,1,BS,stdin);
return st==ed?EOF:*st++;
}
//#define nc getchar
inline int getint(){
char ch;
int res=0;
while(!isdigit(ch=nc()));
while(isdigit(ch)){
res=(res<<1)+(res<<3)+(ch^48);
ch=nc();
}
return res;
}
signed main(){
n=getint(),m=getint();
for(int i=1;i<=n;i++)
num[i]=getint();
for(int i=1;i<=n;i++){
col[i]=getint();
if(i&1){
odd[col[i]].push_back(i);
int a=qzh1[col[i]].size();
if(!qzh1[col[i]].empty())
qzh1[col[i]].push_back((qzh1[col[i]][a-1]+num[i]));
else qzh1[col[i]].push_back(num[i]);
a=qzh2[col[i]].size();
if(!qzh2[col[i]].empty())
qzh2[col[i]].push_back((qzh2[col[i]][a-1]+i));
else qzh2[col[i]].push_back(i);
a=qzh3[col[i]].size();
if(!qzh3[col[i]].empty())
qzh3[col[i]].push_back((qzh3[col[i]][a-1]+i*num[i]));
else qzh3[col[i]].push_back((i*num[i]));
}
else{
even[col[i]].push_back(i);
if(!qzh4[col[i]].empty())
qzh4[col[i]].push_back((qzh4[col[i]][qzh4[col[i]].size()-1]+num[i]));
else qzh4[col[i]].push_back(num[i]);
if(!qzh5[col[i]].empty())
qzh5[col[i]].push_back((qzh5[col[i]][qzh5[col[i]].size()-1]+i));
else qzh5[col[i]].push_back(i);
if(!qzh6[col[i]].empty())
qzh6[col[i]].push_back((qzh6[col[i]][qzh6[col[i]].size()-1]+i*num[i]));
else qzh6[col[i]].push_back((i*num[i]));
}
}
for(int k=1;k<=n;k++){
if(vis[col[k]]) continue;
vis[col[k]]=1;
for(int i=0;i<odd[col[k]].size();i++){
int p=odd[col[k]].size()-i-1;
(ans+=odd[col[k]][i]%mod*num[odd[col[k]][i]]%mod*p%mod)%=mod;
(ans+=odd[col[k]][i]%mod*(qzh1[col[k]][qzh1[col[k]].size()-1]-qzh1[col[k]][i])%mod)%=mod;
(ans+=num[odd[col[k]][i]]%mod*(qzh2[col[k]][qzh2[col[k]].size()-1]-qzh2[col[k]][i])%mod)%=mod;
(ans+=qzh3[col[k]][qzh3[col[k]].size()-1]-qzh3[col[k]][i])%=mod;
}
for(int i=0;i<even[col[k]].size();i++){
int p=even[col[k]].size()-i-1;
(ans+=even[col[k]][i]%mod*num[even[col[k]][i]]%mod*p%mod)%=mod;
(ans+=even[col[k]][i]%mod*(qzh4[col[k]][qzh4[col[k]].size()-1]-qzh4[col[k]][i])%mod)%=mod;
(ans+=num[even[col[k]][i]]%mod*(qzh5[col[k]][qzh5[col[k]].size()-1]-qzh5[col[k]][i])%mod)%=mod;
(ans+=qzh6[col[k]][qzh6[col[k]].size()-1]-qzh6[col[k]][i])%=mod;
}
}
printf("%lld\n",ans%mod);
return 0;
}
[Noip2015PJ] 求和的更多相关文章
- NOIP2015pj求和
题目描述 一条狭长的纸带被均匀划分出了n个格子,格子编号从1到n.每个格子上都染了一种颜色color_i用[1,m]当中的一个整数表示),并且写了一个数字number_i. 定义一种特殊的三元组:(x ...
- Java程序:从命令行接收多个数字,求和并输出结果
一.设计思想:由于命令行接收的是字符串类型,因此应先将字符串类型转化为整型或其他字符型,然后利用for循环求和并输出结果 二.程序流程图: 三.源程序代码: //王荣荣 2016/9/23 ...
- Java之递归求和的两张方法
方法一: package com.smbea.demo; public class Student { private int sum = 0; /** * 递归求和 * @param num */ ...
- EXCEL中对1个单元格中多个数字求和
如A1=3779.3759.3769.3781.3750,A2对A1中4个数字求和怎么求!请高手赐教! 方法一:在B1中输入公式=SUM(MID(A1,{1,6,11,16,21},4)*1) 方法二 ...
- codevs 1082 线段树区间求和
codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...
- 从sum()求和引发的思考
sum()求和是一个非常简单的函数,以前我的写法是这样,我想大部分和我一样刚开始学习JS的同学写出来的也会是这样. function sum() { var total=null; for(var i ...
- //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和
//给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和 # include<stdio.h> void main() { ,sum1; ]={,- ...
- Ajax中get请求和post请求
我们在使用Ajax向服务器发送数据时,可以采用Get方式请求服务器,也可以使用Post方式请求服务器,那么什么时候该采用Get方式,什么时候该采用Post方式呢? Get请求和Post请求的区别: 1 ...
- POJ 2823 Sliding Window 线段树区间求和问题
题目链接 线段树区间求和问题,维护一个最大值一个最小值即可,线段树要用C++交才能过. 注意这道题不是求三个数的最大值最小值,是求k个的. 本题数据量较大,不能用N建树,用n建树. 还有一种做法是单调 ...
随机推荐
- laravel控制器之资源控制器
资源控制器 Laravel 的资源控制器可以让我们很便捷地构建基于资源的 RESTful 控制器,例如,你可能想要在应用中创建一个控制器,用于处理关于文章存储的 HTTP 请求,使用 Artisan ...
- Netsharp配置文件
一.总体说明 netsharp下需要配置的项目一般是需要独立启动的项目,主要有四个 netsharp-web netsharp-test netsharp-elephant netsharp-donk ...
- Linux环境部署项目引起Out of Memory Error: PermGen Space的解决方案
1. 背景 前几天,在搭建项目时遇到到一些问题,现在整理记录一下. Linux环境:Red Hat Enterprise Linux Server release 6.4: # 查看命令cat /et ...
- numpy版本查看以及升降
如题,参考:https://zhuanlan.zhihu.com/p/29026597 pip show numpy 查看numpy版本; pip install -U numpy==1.12.0, ...
- MFC的停靠窗口中插入对话框,在对话框中添加控件并做控件自适应
单文档程序添加了停靠窗口后,可能会在停靠窗口中添加一些控件.在这里我的做法是在对话框上添加控件并布局,然后将这个对话框插入到停靠窗口中. 步骤 1.插入对话框,在对话框中放入控件(我的为树形控件),并 ...
- 在IDEA中配置spring boot项目的热更新
在我使用IDEA的过程中,我发现Spring Boot项目本来自带的一个热部署工具无法使用,这里在参考各家博客后给出解决方案: 修改POM 首先POM文件需要包含spring boot的热部署工具,m ...
- 小程序快捷键(mac中)
快捷键 格式调整 - Ctrl+S:保存文件 - Ctrl+[, Ctrl+]:代码行缩进 - Ctrl+Shift+[, Ctrl+Shift+]:折叠打开代码块 - Ctrl+C Ctrl ...
- Forward团队-爬虫豆瓣top250项目-模块测试
项目托管平台地址:https://github.com/xyhcq/top250 模块测试:爬虫对信息的处理部分 测试方法: 实际运行一下代码: 可以看见,信息都已经爬取出来了 其他补充说明: 原本系 ...
- MFC 多窗口通信时,使用RadioButton和Button时冲突问题
最近项目需要我们实现在两个窗口间进行通信,其中有个小功能如图所示: 当我点击GDIProgram中的Button1时,会更新Dialog的Radio1和Radio2的状态. Dialog中的Radio ...
- unigui日志
unigui日志 uniGUI本身提供了日志功能,利用uniServerModule.ServerLogger来控制如何写日志: Enabled:是否写日志 Options:logIndyExcept ...