题目描述

每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场。牧场构成了一棵树,粮仓在1号牧场。恰好有N-1条道路直接连接着牧场,使得牧场之间都恰好有一条路径相连。第i条路连接着A_i,B_i,(1 <= A_i <= N; 1 <= B_i <= N)。奶牛们每人有一个私人牧场P_i (1 <= P_i <= N)。粮仓的门每次只能让一只奶牛离开。耐心的奶牛们会等到他们的前面的朋友们到达了自己的私人牧场后才离开。首先奶牛1离开,前往P_1;然后是奶牛2,以此类推。当奶牛i走向牧场P_i时候,他可能会经过正在吃草的同伴旁。当路过已经有奶牛的牧场时,奶牛i会放
慢自己的速度,防止打扰他的朋友。 考虑如下的牧场结构(括号内的数字代表了牧场的所有者)。

输入

* 第1行 : 一个正整数N * 第2…N行: 第i+1行包括一对正整数A_i,B_i * 第N+1..N+N行: 第 N+i行 包括一个正整数: P_i

输出

* 第一行到第N行:第i行表示第i只奶牛需要被放慢的次数

样例输入

5
1 4
5 4
1 3
2 4
4
2
1
5
3

样例输出

0
1
0
2
1
 
题目大意就是求每个点到根节点的链上有几个点的点权(就是奶牛编号)比这个点小。看其他人都是什么拿树状数组、树链剖分、线段树过的。最近写平衡树比较爽的我就拿treap写了一下。首先求一条链(也就是一个数列)上比这个数小的数有多少个,直接求一下当前数在数列中的排名就好了,这个直接裸上treap。但因为只考虑这条链上的点,所以要在每次回溯到一个点时把这个点从treap中删除。
最后附上代码。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
int x,y;
int tot;
int root;
int a[100010];
int s[100010];
int r[300010];
int v[300010];
int g[100010];
int to[200010];
int ls[300010];
int rs[300010];
int head[100010];
int next[200010];
int size[300010];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void up(int x)
{
size[x]=size[rs[x]]+size[ls[x]]+1;
}
void rturn(int &x)
{
int t;
t=ls[x];
ls[x]=rs[t];
rs[t]=x;
size[t]=size[x];
up(x);
x=t;
}
void lturn(int &x)
{
int t;
t=rs[x];
rs[x]=ls[t];
ls[t]=x;
size[t]=size[x];
up(x);
x=t;
}
void insert_sum(int x,int &i)
{
if(!i)
{
i=++tot;
size[i]=1;
v[i]=x;
r[i]=rand();
return ;
}
size[i]++;
if(x>v[i])
{
insert_sum(x,rs[i]);
if(r[rs[i]]<r[i])
{
lturn(i);
}
}
else
{
insert_sum(x,ls[i]);
if(r[ls[i]]<r[i])
{
rturn(i);
}
}
return ;
}
void delete_sum(int x,int &i)
{
if(i==0)
{
return ;
}
if(v[i]==x)
{
if((ls[i]*rs[i])==0)
{
i=ls[i]+rs[i];
}
else if(r[ls[i]]<r[rs[i]])
{
rturn(i);
delete_sum(x,i);
}
else
{
lturn(i);
delete_sum(x,i);
}
return ;
}
size[i]--;
if(v[i]<x)
{
delete_sum(x,rs[i]);
}
else
{
delete_sum(x,ls[i]);
}
return ;
}
int ask_num(int x,int i)
{
if(i==0)
{
return 0;
}
if(v[i]==x)
{
return size[ls[i]]+1;
}
if(v[i]<x)
{
return ask_num(x,rs[i])+size[ls[i]]+1;
}
return ask_num(x,ls[i]);
}
void dfs(int x,int fa)
{
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
g[s[to[i]]]=ask_num(s[to[i]],root);
insert_sum(s[to[i]],root);
dfs(to[i],x);
delete_sum(s[to[i]],root);
}
}
}
int main()
{
srand(12378);
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s[a[i]]=i;
}
insert_sum(s[1],root);
g[s[1]]=0;
dfs(1,1);
for(int i=1;i<=n;i++)
{
printf("%d\n",g[i]);
}
}

BZOJ1782[USACO 2010 Feb Gold 3.Slowing down]——dfs+treap的更多相关文章

  1. [USACO 2018 Feb Gold] Tutorial

    Link: USACO 2018 Feb Gold 传送门 A: $dp[i][j][k]$表示前$i$个中有$j$个0且末位为$k$的最优解 状态数$O(n^3)$ #include <bit ...

  2. NC24724 [USACO 2010 Feb S]Chocolate Eating

    NC24724 [USACO 2010 Feb S]Chocolate Eating 题目 题目描述 Bessie has received \(N (1 <= N <= 50,000)\ ...

  3. [ USACO 2010 FEB ] Slowing Down

    \(\\\) \(Description\) 给出一棵 \(N\) 个点的树和 \(N\) 头牛,每头牛都要去往一个节点,且每头牛去往的点一定互不相同. 现在按顺序让每一头牛去往自己要去的节点,定义一 ...

  4. [USACO 2012 Feb Gold] Cow Coupons【贪心 堆】

    传送门1:http://www.usaco.org/index.php?page=viewproblem2&cpid=118 传送门2:http://www.lydsy.com/JudgeOn ...

  5. BZOJ1577 USACO 2009 Feb Gold 1.Fair Shuttle Solution

    权限题,不给传送门啦!在学校OJ上交的.. 有些不开心,又是一道贪心,又是一个高级数据结构的模板,又是看了别人的题解还写崩了QAQ,蒟蒻不需要理由呀. 正经题解: 首先,我们可以由「显然成立法」得出, ...

  6. Usaco 2010 Dec Gold Exercise(奶牛健美操)

    /*codevs 3279 二分+dfs贪心检验 堆版本 re一个 爆栈了*/ #include<cstdio> #include<queue> #include<cst ...

  7. BZOJ1579 USACO 2009 Feb Gold 3.Revamping Trails Solution

    标题效果:一个N积分m无向图边.它可以是路径k右边缘值变0,确定此时1-n最短路径长度. Sol:我以为我们考虑分层图,图复制k+1部分,每间0~k一层.代表在这个时候已经过去"自由边缘&q ...

  8. bzoj3939 【USACO 2015 FEB GOLD 】cow hopscotch

    Description 就像人类喜欢玩"跳房子"的游戏,农民约翰的奶牛已经发明了该游戏的一个变种自己玩.由于笨拙的动物体重近一吨打,牛跳房子几乎总是以灾难告终,但这是没有阻止奶牛几 ...

  9. BZOJ1828[USACO 2010 Mar Gold 2.Barn Allocation]——贪心+线段树

    题目描述 输入 第1行:两个用空格隔开的整数:N和M * 第2行到N+1行:第i+1行表示一个整数C_i * 第N+2到N+M+1行: 第i+N+1行表示2个整数 A_i和B_i 输出 * 第一行: ...

随机推荐

  1. Omi框架学习之旅 - 获取DOM节点 及原理说明

    虽然绝大部分情况下,开发者不需要去查找获取DOM,但是还是有需要获取DOM的场景,所以Omi提供了方便获取DOM节点的方式. 这是官网的话,但是我一直都需要获取dom,对dom操作,所以omi提供的获 ...

  2. 九,ESP8266 判断是断电上电(强制硬件复位)之后运行的内部程序还是内部软件复位之后运行的程序(基于Lua脚本语言)

    现在我有一个需求,WIFI模块控制一个继电器,我要做的是如果内部程序跑乱了,造成了内部程序复位重启,那么控制继电器的状态不能改变 如果是设备断电了,然后又来电了,我需要的是继电器一定要是断开才好.不能 ...

  3. Oracle 在函数或存储过程中执行一条插入语句并返回主键ID值

    有时,我们需要往一张表插入一条记录,同时返回主键ID值. 假定主键ID的值都是通过对应表的SEQUENCE来获得,然后进行ID赋值 这里有几种情况需要注意: 1)如果建表语句含有主键ID的触发器,通过 ...

  4. HTML5 读取上传文件(转载)

    另参考 http://www.jianshu.com/p/46e6e03a0d53 1 filelist对象与file对象: <input type="file" id=&q ...

  5. CF1060E Sergey and Subways 假的点分治

    题目传送门:http://codeforces.com/problemset/problem/1060/D 题意:给出$N$个点的一棵树,现在将距离为$2$的点之间连一条边,求所有点对之间最短路的和, ...

  6. [JSOI2016]无界单词[动态规划、kmp]

    题意 题目链接 分析 对于第一问,枚举最终串最小的相同前后缀来统计答案. 由于最小的相同前后缀也是无界单词,所以可以考虑先求解子问题. 定义状态 \(f(i)\) 表示长度为 \(i\) 的串中有多少 ...

  7. J-query extend()方法

    1.如果没有冲突参数会弥在后面. 2.参数如果和前面的参数存在相同的名称,那么后面的会覆盖前面的参数值.

  8. Linux ugo 权限

    Linux 系统中文件的 ugo 权限是 Linux 进行权限管理的基本方式.本文将介绍 ugo 权限的基本概念.说明:本文的演示环境为 ubuntu 16.04. 文件的所有者和组 Linux 文件 ...

  9. Linux系统下CPU使用(load average)梳理

    在平时的运维工作中,当一台服务器的性能出现问题时,通常会去看当前的CPU使用情况,尤其是看下CPU的负载情况(load average).对一般的系统来说,根据cpu数量去判断.比如有2颗cup的机器 ...

  10. Daily scrum 12.21

    今天ui组反映了一个数据库数据类型的问题,开发人员在完成任务后再去处理. Member Today’s task 林豪森 与学霸其他小组交流,处理整合问题 宋天舒 修复数据库问题 张迎春 修复数据库问 ...