BZOJ2671 Calc(莫比乌斯反演)
两个多月之前写的题,今天因为看到一道非常相似的题就翻出来了,发现完全不会,没救。
感觉这个题其实第一步是最难想到的,也是最重要的。
设d=gcd(a,b)。那么a=yd,b=xd,且gcd(x,y)=1。a+b|ab等价于x+y|xyd。
由gcd(x,y)=1,得gcd(x+y,y)=gcd(x,x+y)=1。x和y都与x+y互质,那么他们的积xy也与x+y互质,即gcd(xy,x+y)=1。
gcd(xy,x+y)=1,而x+y|xyd,所以x+y|d。
那么现在要求的是
下取整的那部分是满足x+y|d且xd<=n的d的个数。
显然x>√n之后就没有贡献了。这样复杂度变为线性(不算gcd复杂度的话),但还不够。
看到那个gcd=1,妥妥的上莫比乌斯反演。接下来比较套路。
后面一部分的计算可以整除分块。
那这样的时间复杂度是多少呢?看起来是低于线性的,但具体是多少我也不知道……总之他跑的比香港记者还非常快。
今天看到的那道题多了一个限制,即ab/(a+b)与gcd(a,b)互质。
设c=ab/(a+b),那么有(x+y)c=xyd。设d=k(x+y),c=kxy。由gcd(d,c)=1,如果能证明k是正整数的话,那么显然k=1。下证k为正整数。
反证。假设k=u/v(u,v∈N*,gcd(u,v)=1,v>1)。因为c,d均为正整数,所以v|x+y,v|xy。而又有gcd(x+y,xy)=1,矛盾。所以k为正整数。
剩下部分就类似了,由于确定了k=1即d=x+y,可以做到严格的√nlogn。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 100000
#define min(a,b) ((a)<(b)?(a):(b))
#define ri register int
int n,m,mobius[N],prime[N],cnt=;
long long ans=;
bool flag[N];
int main()
{
cin>>n;
m=sqrt(n);
flag[]=;mobius[]=;
for (int i=;i<=m;i++)
{
if (!flag[i]) prime[++cnt]=i,mobius[i]=-;
for (int j=;j<=cnt&&prime[j]*i<=m;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
else mobius[prime[j]*i]=-mobius[i];
}
}
for (ri i=;i<=m;i++)
if (mobius[i])
{
ri v=i*i,c=m/i+;
for (ri k=;k<c;k++)
{
ri t=n/(k*v),u=(k<<)-,h=min(t,u)+;
for (ri j=k+;j<h;)
{
ri w=t/j,l=min(u,t/w)+;
ans+=1ll*(l-j)*mobius[i]*w;
j=l;
}
}
}
cout<<ans;
}
BZOJ2671 Calc(莫比乌斯反演)的更多相关文章
- 【BZOJ2671】Calc(莫比乌斯反演)
[BZOJ2671]Calc 题面 BZOJ 给出N,统计满足下面条件的数对(a,b)的个数: 1.\(1\le a\lt b\le N\) 2.\(a+b\)整除\(a*b\) 我竟然粘了题面!!! ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
- 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)
[Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...
- BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...
- Luogu4916 魔力环 莫比乌斯反演、组合、生成函数
传送门 先不考虑循环同构的限制,那么对于一个满足条件的序列,如果它的循环节长度为\(d\),那么与它同构的环在答案中就会贡献\(d\)次. 所以如果设\(f_i\)表示循环节长度恰好为\(i\)的满足 ...
- LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...
- 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)
[LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...
随机推荐
- Java多线程编程模式实战指南一:Active Object模式(下)
Active Object模式的评价与实现考量 Active Object模式通过将方法的调用与执行分离,实现了异步编程.有利于提高并发性,从而提高系统的吞吐率. Active Object模式还有个 ...
- 大牛blog
分布式: 分布式基础学习[一] —— 分布式文件系统 分布式基础学习[二] —— 分布式计算系统(Map/Reduce) Java分布式应用技术架构介绍
- GIT 工作区和暂存区
工作区和暂存区 Git和其他版本控制系统如SVN的一个不同之处就是有暂存区的概念. 先来看名词解释. 工作区(Working Directory) 就是你在电脑里能看到的目录,比如我的studygit ...
- [07] 使用注解完成IOC配置
1.扫描配置 之前使用的Spring的Bean管理都是通过xml的配置文件来操作的,在Spring3.0之后已经引入了注解形式,Spring可以在指定路径下进行扫描,寻找标注了@Component.@ ...
- linux驱动编写之阻塞与非阻塞
一.概念 应用程序使用API接口,如open.read等来最终操作驱动,有两种结果--成功和失败.成功,很好处理,直接返回想要的结果:但是,失败,是继续等待,还是返回失败类型呢? 如果继续等待,将进 ...
- Vue与Element走过的坑。。。。带上Axios
1.Axios中post传参数组(java后端接收数组) 虽然源数据本身就是数组,但是传参时会自动变成key:数值或者服务器无法接收的对象,如下 如果不仔细看,很容易认为这两种情况没毛病..(后端不背 ...
- c#基础系列1---深入理解值类型和引用类型
"大菜":源于自己刚踏入猿途混沌拾起,自我感觉不是一般的菜,因而得名"大菜",于自身共勉. 不知不觉已经踏入坑已10余年之多,对于c#多多少少有一点自己的认识, ...
- 免费的 Vue.js 入门与进阶视频教程
这是我免费发布的高质量超清「Vue.js 入门与进阶视频教程」. 全网最好的.免费的 Vue.js 视频教程,课程基于 Vue.js 2.0,由浅入深,最后结合实际的项目进行了最棒的技术点讲解,此课程 ...
- windows如何查看电脑开关机记录
如何查看电脑开关机记录 (一)如果你只是想查看一下,从昨天关机到今天开机之间有没有人使用我的计算机,在“开始”菜单的运行”中输入“eventvwr.msc”,或者是按下"开始菜单" ...
- Jmeter(非GUI模式)教程
前言 使用非 GUI 模式,即命令行模式运行 JMeter 测试脚本能够大大缩减所需要的系统资源.优点如下:1.节约系统资源:无需启动界面,节约系统资源 2.便捷快速:仅需启动命令行,输入命令便可执行 ...