两个多月之前写的题,今天因为看到一道非常相似的题就翻出来了,发现完全不会,没救。

  感觉这个题其实第一步是最难想到的,也是最重要的。

  设d=gcd(a,b)。那么a=yd,b=xd,且gcd(x,y)=1。a+b|ab等价于x+y|xyd。

  由gcd(x,y)=1,得gcd(x+y,y)=gcd(x,x+y)=1。x和y都与x+y互质,那么他们的积xy也与x+y互质,即gcd(xy,x+y)=1。

  gcd(xy,x+y)=1,而x+y|xyd,所以x+y|d。

  那么现在要求的是

  下取整的那部分是满足x+y|d且xd<=n的d的个数。

  显然x>√n之后就没有贡献了。这样复杂度变为线性(不算gcd复杂度的话),但还不够。

  看到那个gcd=1,妥妥的上莫比乌斯反演。接下来比较套路。

  

  

  

  后面一部分的计算可以整除分块。

  那这样的时间复杂度是多少呢?看起来是低于线性的,但具体是多少我也不知道……总之他跑的比香港记者还非常快。

  今天看到的那道题多了一个限制,即ab/(a+b)与gcd(a,b)互质。

  设c=ab/(a+b),那么有(x+y)c=xyd。设d=k(x+y),c=kxy。由gcd(d,c)=1,如果能证明k是正整数的话,那么显然k=1。下证k为正整数。

  反证。假设k=u/v(u,v∈N*,gcd(u,v)=1,v>1)。因为c,d均为正整数,所以v|x+y,v|xy。而又有gcd(x+y,xy)=1,矛盾。所以k为正整数。

  剩下部分就类似了,由于确定了k=1即d=x+y,可以做到严格的√nlogn。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 100000
#define min(a,b) ((a)<(b)?(a):(b))
#define ri register int
int n,m,mobius[N],prime[N],cnt=;
long long ans=;
bool flag[N];
int main()
{
cin>>n;
m=sqrt(n);
flag[]=;mobius[]=;
for (int i=;i<=m;i++)
{
if (!flag[i]) prime[++cnt]=i,mobius[i]=-;
for (int j=;j<=cnt&&prime[j]*i<=m;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
else mobius[prime[j]*i]=-mobius[i];
}
}
for (ri i=;i<=m;i++)
if (mobius[i])
{
ri v=i*i,c=m/i+;
for (ri k=;k<c;k++)
{
ri t=n/(k*v),u=(k<<)-,h=min(t,u)+;
for (ri j=k+;j<h;)
{
ri w=t/j,l=min(u,t/w)+;
ans+=1ll*(l-j)*mobius[i]*w;
j=l;
}
}
}
cout<<ans;
}

BZOJ2671 Calc(莫比乌斯反演)的更多相关文章

  1. 【BZOJ2671】Calc(莫比乌斯反演)

    [BZOJ2671]Calc 题面 BZOJ 给出N,统计满足下面条件的数对(a,b)的个数: 1.\(1\le a\lt b\le N\) 2.\(a+b\)整除\(a*b\) 我竟然粘了题面!!! ...

  2. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  3. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  4. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  5. 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)

    [Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...

  6. BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演

    BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...

  7. Luogu4916 魔力环 莫比乌斯反演、组合、生成函数

    传送门 先不考虑循环同构的限制,那么对于一个满足条件的序列,如果它的循环节长度为\(d\),那么与它同构的环在答案中就会贡献\(d\)次. 所以如果设\(f_i\)表示循环节长度恰好为\(i\)的满足 ...

  8. LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)

    题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...

  9. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

随机推荐

  1. springcloud config

    规则: 一.获取文件属性/{label}/{application}-{profile}.properties/yml http://localhost:8080/master/case-dev.pr ...

  2. Redis详解(八)------ 主从复制

    前面介绍Redis,我们都在一台服务器上进行操作的,也就是说读和写以及备份操作都是在一台Redis服务器上进行的,那么随着项目访问量的增加,对Redis服务器的操作也越加频繁,虽然Redis读写速度都 ...

  3. C#析构函数 (转载)

    一.C#析构函数 1. 析构函数的定义与注意的问题析构函数用于释放被占用的系统资源.析构函数的名字由符号“-”加类名组成.使用析构函数时,应该注意下面的问题: 只能在类中使用析构函数,不能在结构中使用 ...

  4. 设计模式-简单工厂Coding+jdk源码解析

    感谢慕课geely老师的设计模式课程,本套设计模式的所有内容均以课程为参考. 前面的软件设计七大原则,目前只有理论这块,因为最近参与项目重构,暂时没有时间把Coding的代码按照设计思路一点点写出来. ...

  5. Linux ugo 权限

    Linux 系统中文件的 ugo 权限是 Linux 进行权限管理的基本方式.本文将介绍 ugo 权限的基本概念.说明:本文的演示环境为 ubuntu 16.04. 文件的所有者和组 Linux 文件 ...

  6. Jenkins部署Python项目实战

    一.背景 我们工作中常用Jenkins部署Java代码,因其灵活的插件特性,例如jdk,maven,ant等使得java项目编译后上线部署一气呵成,同样对于脚本语言类型如Python上线部署,利用Je ...

  7. jsp获取传过来的值

    request.setCharacterEncoding("utf-8"); String credit=request.getParameter("credit&quo ...

  8. PAT 甲级 1045 Favorite Color Stripe

    https://pintia.cn/problem-sets/994805342720868352/problems/994805437411475456 Eva is trying to make ...

  9. Linux下运行Shell脚本或者可执行文件Executable方法

    绝对路径 /xxx/xxx/something.sh /xxx/xxx/executable 相对路径 ./something.sh ./executable 注意:前边得加./,可不是像window ...

  10. HTML5 Base64_encoding_and_decoding

    https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding In JavaSc ...