令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足、存在黑色叶节点未被满足、存在白色叶节点未被满足,考虑i节点涂色情况即可转移。事实上贪心也可以。

  

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
int n,m,f[N][],c[N],p[N],t=;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k,int from)
{
if (k<=m) f[k][]=,f[k][c[k]]=,f[k][c[k]]=n;
else
{
f[k][]=f[k][]=f[k][]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
f[k][]+=f[edge[i].to][];
f[k][]+=min(f[edge[i].to][],f[edge[i].to][]);
f[k][]+=min(f[edge[i].to][],f[edge[i].to][]);
}
f[k][]=min(f[k][],min(f[k][],f[k][])+);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1304.in","r",stdin);
freopen("bzoj1304.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=m;i++) c[i]=read()+;
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
dfs(n,n);
cout<<f[n][];
return ;
}

BZOJ1304 CQOI2009叶子的染色(树形dp)的更多相关文章

  1. BZOJ1304: [CQOI2009]叶子的染色 树形dp

    Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...

  2. 【bzoj1304】[CQOI2009]叶子的染色 树形dp

    题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...

  3. BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  4. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  5. 【树形dp】bzoj1304: [CQOI2009]叶子的染色

    又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...

  6. BZOJ1304: [CQOI2009]叶子的染色

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...

  7. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  8. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  9. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

随机推荐

  1. C. Report

    题意:给出n个无序的数以及m个操作,每个操作由两个数组成,第一个数是操作的方式,第二个数 i 是操作的范围,若第一个数是1,则给 1-i 个数按升序排序,若第二个数是2,则给 1-i 个数按降序排列. ...

  2. linux应用编程之进程间同步

    一.描述 在操作系统中,异步并发执行环境下的一组进程,因为相互制约关系,进而互相发送消息.互相合作.互相等待,使得各进程按一定的顺序和速度执行,称为进程间的同步.具有同步关系的一组并发进程,称为合作进 ...

  3. 通过chrome浏览器分析网页加载时间

    今天趁着下班的时间看了下chrome浏览器的网页加载时间分析工具和相关文档,简单写点儿东西记录一下. 以百度首页加载为例,分析下一张图片1.jgp(就是背景图)的加载时间 看右侧的Timing标签,从 ...

  4. Luogu4040 AHOI/JSOI2014 宅男计划 贪心、二分、三分

    传送门 仍然对"为什么这个函数单峰"的问题毫无理解 首先,对于保质期又低.价格又贵的食物,我们显然不需要购买它.所以如果设\(pri_i\)表示保质期不小于\(i\)的所有食品中价 ...

  5. python winpdb远程调试

    1.使用rpdb2.start_embedded_debugger ,注意要将参数fAllowRemote 设置为True 2.winpdb前端GUI使用python2 3.rpdb兼容python2 ...

  6. CF [2016-2017 ACM-ICPC CHINA-Final][GYM 101194 H] Great Cells

    很久以前做的一道思博题了,今天来补一补. 大致题意:在一个\(n*m\)的矩阵内填整数,数字在\([1,k]\)范围内.矩阵中某格的数为great number当且仅当与它同行同列的数字都严格比它小. ...

  7. 使用 cron 定时任务实现 war 自动化发布

    autoRelease.sh #!/bin/sh /home/tomcat/bin/shutdown.sh echo "tomcat stoped" cd /home/tomcat ...

  8. 五年.net程序员Java学习之路

    大学毕业后笔者进入一家外企,做企业CRM系统开发,那时候开发效率最高的高级程序语言,毫无疑问是C#.恰逢公司也在扩张,招聘了不少.net程序员,笔者作为应届生,也乐呵呵的加入到.net程序员行列中. ...

  9. “Linux内核分析”第五周报告

    张文俊+ 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 学习总结 1.给M ...

  10. Linux实践:ELF文件格式分析

    标签(空格分隔): 20135321余佳源 一.基础知识 ELF全称Executable and Linkable Format,可执行连接格式,ELF格式的文件用于存储Linux程序.ELF文件(目 ...