pandas 2
==============
sdf={'rkey':[1,2,3,2],'name':['rkey1','rkey2','rkey3','rkey4']}
sdf2={'lkey':[1,2,3],'name':['lsdf1','lsdf2','lsdf3']}
sdf3={'lkey':[11,2,3],'name':['lsdf3','lsdf3','lsdf3']}
cc=DataFrame(sdf)
cc2=DataFrame(sdf2)
cc3=DataFrame(sdf3)
print cc.merge(cc2,left_on='rkey',right_on='lkey')
name_x rkey lkey name_y
0 rkey1 1 1 lsdf1
1 rkey2 2 2 lsdf2
2 rkey4 2 2 lsdf2
3 rkey3 3 3 lsdf3
print cc2.merge(cc3,on='lkey')
lkey name_x name_y
0 2 lsdf2 lsdf3
1 3 lsdf3 lsdf3
# 指定附加在重名列上的字符串
print cc2.merge(cc3,on='lkey',suffixes=('_left','_right'))
lkey name_left name_right
0 2 lsdf2 lsdf3
1 3 lsdf3 lsdf3
======通过索引和列进行合并=====================
sdf2={'tst':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'lkey':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=[1,2,3])
cc3=DataFrame(sdf3)
print cc2.merge(cc3,left_index=True,right_on='lkey')
=======================
sdf=Series([11,22,33])
sdf2=Series([44,55,66])
print pd.concat([sdf,sdf2])
print pd.concat([sdf,sdf2],axis=1)
=============
sdf2={'tst2':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'tst3':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print pd.concat([cc2,cc3])
print pd.concat([cc2,cc3],axis=1)
===========
print pd.concat([cc2,cc3],axis=1,join='inner')
print pd.concat([cc2,cc3],join='inner')
==============
sdf2={'tst':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'tst':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print pd.concat([cc2,cc3],ignore_index=True)
=========用参数对象中的数据为调用者对象的缺失数据打补丁==========
sdf2={'tst':[11,np.nan,33],'name':[np.nan,'lsdf22','lsdf22']}
sdf3={'tst':[1,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print cc2.combine_first(cc3)
======================
sdf3={'tst':[1,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc3=DataFrame(sdf3,index=['a','b','c'])
# 指定附加在重名列上的字符串
print cc3.replace(3,100) #替换一个值
print cc3.replace([1,3],100) #替换多个值
print cc3.replace({1:100,3:300}) #不同值进行不同替换
================
df=pd.DataFrame({'name':['aa','bb','cc'],'age':[,,]})
ss=df['age']
print ss Name: age, dtype: int64
索引ss的某一个值:ss[0]
索引ss的某几个值:ss[[0,1]]
切片:ss[1:]
==========
s6=pd.Series(np.array([,,,,,]),index=['a','b','c','d','e','f'])
s7=pd.Series(np.array([,,,,,]),index=['a','c','g','b','d','f'])
#s6中不存在g索引,s7中不存在e索引,所以数据运算会产生两个缺失值NaN。
print(s6+s7)
dtype: int32
a 22.0
b 30.0
c 31.0
d 44.0
e NaN
f 96.0
g NaN
#可以注意到这里的算术运算自动实现了两个序列的自动对齐
#对于数据框的对齐,不仅是行索引的自动对齐,同时也会对列索引进行自动对齐,数据框相当于二维数组的推广
print(s6/s7)
dtype: float64
a 0.833333
b 1.000000
c 1.818182
d 2.142857
e NaN
f 5.000000
g NaN
dtype: float64
获取DataFrame的多行:test_data.iloc[[0,2,4,5,7]]
按某一列的值进行过滤:test_data[test_data['age']==51]
对多列进行过滤:test_data[(test_data['age']==51) & (test_data['job']>=5)] ---圆括号括起来+ &
过滤完后,只留下某几列:test_data[(test_data['age']==51) & (test_data['job']>=5)][['education','housing','loan','contact','poutcome']]
查询指定的行:test_data.loc[[0,2,4,5,7]]
查询指定的列:test_data[['age','job','marital']]
查询指定的行和列:test_data.loc[[0,2,4,5,7],['age','job','marital']]
pandas 2的更多相关文章
- pandas基础-Python3
未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...
- 10 Minutes to pandas
摘要 一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型 十.画图 十一 ...
- 利用Python进行数据分析(15) pandas基础: 字符串操作
字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- pandas.DataFrame对行和列求和及添加新行和列
导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFra ...
- pandas.DataFrame排除特定行
使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列 ...
随机推荐
- .net core 2.0+superui +Dapper.SimpleCRUD+mysql+NLog
**_ .net core 2.0+superui +Dapper.SimpleCRUD+mysql+NLog _** 前端框架 superui http://www.supermgr.cn/ 1.组 ...
- python3 --- locale命名空间让程序更加安全了
[简介] 由于python-2.x 并没有locale这个层次的命名空间,所以临时变量有可能会泄漏,进而影响到了包涵它的命名空间 [看一下pyhont-2.x是怎么泄漏临时变量的] python Py ...
- webpack的配置文件
1.路径 __dirname是一个全局变量,在项目html和js中没有单独定义,直接写就可以得到项目的根目录的路径 module.exports={ // __dirname是nodejs里的一个全局 ...
- .NET EntityFrameworkCore.DbUpdateException 错误
Microsoft.EntityFrameworkCore.DbUpdateException: An error occurred while updating the entries. See t ...
- python 获取本机的IP
python 获取本地的IP import socket import fcntl import struct def get_ip_address(ifname): s = socket.socke ...
- 微信小程序使用npm安装包
小程序现在支持直接通过npm安装包了,点击这里了解更多. 记录一下我自己的安装步骤及安装过程中遇到的一些问题.希望能够帮助到正在阅读此篇文章的你~ 我就直接通过在项目根目录安装miniprogram- ...
- 解决vscode无法提示golang的问题
https://github.com/Microsoft/vscode-go/wiki/Go-with-VS-Code-FAQ-and-Troubleshooting Q: Auto-completi ...
- SAR指标(转)
转自(https://zhidao.baidu.com/question/187156399.html) SAR指标又叫抛物线指标或停损转向操作点指标,其全称叫“Stop and Reverse,缩写 ...
- VSCode之快捷键和常用插件
前言 介绍一下我在VSCode中常用的一些快捷方式: ctrl+上下箭头 上下滚动页面 Ctrl+Shift+K 删除某一行 Alt+ ↑ / ↓ 移动某一行 Shift+Alt + ↓ / ↑ 复制 ...
- ajax json struts JSP传递消息到action返回数据到JSP
ACTION package actions; import com.opensymphony.xwork2.ActionSupport; import net.sf.json.JSONObject; ...