洛谷P3919 【模板】可持久化数组(可持久化线段树/平衡树)
题目背景
UPDATE : 最后一个点时间空间已经放大
标题即题意
有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集)
题目描述
如题,你需要维护这样的一个长度为 N 的数组,支持如下几种操作
在某个历史版本上修改某一个位置上的值
访问某个历史版本上的某一位置的值
此外,每进行一次操作(对于操作2,即为生成一个完全一样的版本,不作任何改动),就会生成一个新的版本。版本编号即为当前操作的编号(从1开始编号,版本0表示初始状态数组)
输入输出格式
输入格式:
输入的第一行包含两个正整数 N, M, 分别表示数组的长度和操作的个数。
第二行包含N个整数,依次为初始状态下数组各位的值(依次为 ai,1≤i≤N)。
接下来M行每行包含3或4个整数,代表两种操作之一(i为基于的历史版本号):
对于操作1,格式为vi 1 loci valuei,即为在版本vi的基础上,将 aloci 修改为valuei
对于操作2,格式为vi 2 loci,即访问版本vi中的 aloci的值,生成一样版本的对象应为vi
输出格式:
输出包含若干行,依次为每个操作2的结果。
输入输出样例
5 10
59 46 14 87 41
0 2 1
0 1 1 14
0 1 1 57
0 1 1 88
4 2 4
0 2 5
0 2 4
4 2 1
2 2 2
1 1 5 91
59
87
41
87
88
46
说明
数据规模:
对于30%的数据:1≤N,M≤10^3
对于50%的数据:1≤N,M≤10^4
对于70%的数据:1≤N,M≤10^5
对于100%的数据:1≤N,M≤10^6,1≤loci≤N,0≤vi<i,−10^9≤ai,valuei≤10^9
经测试,正常常数的可持久化数组可以通过,请各位放心
数据略微凶残,请注意常数不要过大
另,此题I/O量较大,如果实在TLE请注意I/O优化
询问生成的版本是指你访问的那个版本的复制
样例说明:
一共11个版本,编号从0-10,依次为:
* 0 : 59 46 14 87 41
* 1 : 59 46 14 87 41
* 2 : 14 46 14 87 41
* 3 : 57 46 14 87 41
* 4 : 88 46 14 87 41
* 5 : 88 46 14 87 41
* 6 : 59 46 14 87 41
* 7 : 59 46 14 87 41
* 8 : 88 46 14 87 41
* 9 : 14 46 14 87 41
* 10 : 59 46 14 87 91
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define mid ((l+r)>>1)
using namespace std;
const int maxn=;
long long read()
{
long long x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
struct node
{
int rt[maxn*],T[maxn*],L[maxn*],R[maxn*];
int cnt;
int build(int l,int r)
{
int root=++cnt;
if(l==r)
{
T[root]=read();
return root;
}
L[root]=build(l,mid);
R[root]=build(mid+,r);
return root;
}
int update(int pre,int l,int r,int &x,int &c)
{
int root=++cnt;
if(l==r)
{
T[root]=c;
return root;
}
L[root]=L[pre];
R[root]=R[pre]; if(x<=mid)
L[root]=update(L[pre],l,mid,x,c);
else
R[root]=update(R[pre],mid+,r,x,c);
return root;
}
void query(int pre,int l,int r,int& x)
{
if(l==r)
{
printf("%d\n",T[pre]);
return;
}
if(x<=mid)
query(L[pre],l,mid,x);
else
query(R[pre],mid+,r,x);
}
} iu;
int n,m,v,cd,x,y;
int main()
{
iu.cnt=;
n=read(),m=read();
iu.build(,n);
iu.rt[]=;
for(int i=; i<=m; i++)
{
v=read(),cd=read(),x=read();
if(cd==)
{
y=read();
iu.rt[i]=iu.update(iu.rt[v],,n,x,y);
}
if(cd==)
{
iu.rt[i]=iu.rt[v];
iu.query(iu.rt[v],,n,x);
}
}
return ;
}
洛谷P3919 【模板】可持久化数组(可持久化线段树/平衡树)的更多相关文章
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3870」「TJOI2009」开关【线段树】
题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. ...
- 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)
P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...
- 【洛谷5251】[LnOI2019] 第二代图灵机(线段树+ODT)
点此看题面 大致题意: 有单点修改数字和区间着色两种修改操作,询问你某段区间内包含所有颜色且数字和最小的子区间的数字和,或某段区间内没有重复颜色且数字和最大的子区间的数字和.数据随机. \(ODT\) ...
- 【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)
点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值. ...
- 【洛谷4585】[FJOI2015] 火星商店问题(线段树分治)
点此看题面 大致题意: 有\(n\)家店,每个商品有一个标价.每天,都可能有某家商店进货,也可能有某人去购物.一个人在购物时,会于编号在区间\([L_i,R_i]\)的商店里挑选一件进货\(d_i\) ...
- 洛谷P3120 [USACO15FEB]牛跳房子(动态开节点线段树)
题意 题目链接 Sol \(f[i][j]\)表示前\(i\)行\(j\)列的贡献,转移的时候枚举从哪里转移而来,复杂度\(O(n^4)\) 然后考虑每一行的贡献,动态开节点线段树维护一下每种颜色的答 ...
- 洛谷P3605 [USACO17JAN] Promotion Counting 晋升者计数 [线段树合并]
题目传送门 Promotion Counting 题目描述 The cows have once again tried to form a startup company, failing to r ...
- 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)
题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...
- 洛谷P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树_标记永久化
Code: #include <cstdio> #include <algorithm> #include <string> #include <cstrin ...
随机推荐
- C# System.IO.FileMode
字段 Append 6 若存在文件,则打开该文件并查找到文件尾,或者创建一个新文件. 这需要 Append 权限. FileMode.Append 只能与 FileAccess.Write 一起使用. ...
- PhpStorm配置SVN的完整方法
1.安装SVN时注意选择“command line client tools"默认是不安装的 2.设置系统环境变量 3.在PhpStorm上设置如下 4.然后通过VCS就可以上传导入你的工程 ...
- 每天一个linux命令:chgrp
1.命令简介 chgrp(Change group) 用来将每个指定文件的所属组设置为指定值.如果使用 --reference,则将每个文件的所属组设置为与指定参考文件相同. 2.用法 ...
- (原)DropBlock A regularization method for convolutional networks
转载请注明出处: https://www.cnblogs.com/darkknightzh/p/9985027.html 论文网址: https://arxiv.org/abs/1810.12890 ...
- 一行代码搞定 R 语言模型输出!(使用 stargazer 包)
引言 使用stargazer包可以将 R 构建的模型结果以LATEX.HTML和ASCII格式输出,方便我们生成标准格式的表格.再结合rmarkdown,你就可以轻轻松松输出一篇优雅的文章啦~本文“使 ...
- TensorFlow+Keras 02 深度学习的原理
1 神经传递的原理 人类的神经元传递及其作用: 这里有几个关键概念: 树突 - 接受信息 轴突 - 输出信息 突触 - 传递信息 将其延伸到神经元中,示意图如下: 将上图整理成数学公式,则有 y = ...
- 开源自己写的Library到github,让别人或自己的项目依赖
对于不会git命令的自己,要上传项目或libary,看了本文,傻瓜式操作,绝壁简单! 新建一个空白工程 File-->New-->New module-->Android Libra ...
- 转 Java虚拟机5:Java垃圾回收(GC)机制详解
转 Java虚拟机5:Java垃圾回收(GC)机制详解 Java虚拟机5:Java垃圾回收(GC)机制详解 哪些内存需要回收? 哪些内存需要回收是垃圾回收机制第一个要考虑的问题,所谓“要回收的垃圾”无 ...
- 戳破ZigBee技术智能家居的谎言!
戳破ZigBee技术智能家居的谎言 一.ZigBee介绍 简介 在蓝牙技术的使用过程中,人们发现蓝牙技术尽管有许多优点,但仍存在许多缺陷.对工业,家庭自动化控制和遥测遥控领域而言,蓝牙技术显得太复杂, ...
- spring 中单例 bean 初始化之后和销毁之前执行指定动作 postconstruct 和 preDestroy
1 生命周期方法, 在指定bean 创建完成后执行初始化动作或销毁之前做一些善后动作.有 3 种方法 1)实现接口 InitializingBean 然后实现 afterPropertiesSet 方 ...